首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Honey bees and wild bees provide critical pollination services to agricultural ecosystems; however, the relative contributions of different bee taxa are not well understood. The natural habitats surrounding farmland support food and nesting resources for wild bees and therefore play an important role in the maintenance of crop pollination. In this study, we selected Cucurbita pepo L. (squash) as a model crop to investigate the relative importance of honey bees and bumblebees in pollinating the crop. Thirteen fields, which were surrounded by a gradient of natural habitat, were investigated on the Yunnan‐Guizhou Plateau in China. We measured the visit densities of honey bees and bumblebees, the number of pollen grains deposited in a single visit by the two bee taxa, as well as the overall pollen grains deposited on stigmas during a flowering day, and then used Bayesian inference to decouple the pollen grains deposited by either the honey bees or the bumblebees. Compared with honey bees, bumblebees deposited a higher number of pollen grains on stigmas in a single visit, but had a lower visit density than honey bees. Meanwhile, the bumblebee visit density increased along the proportion of natural habitat, while the honey bee visit density was not affected by the surrounding natural habitat. Data simulations using Bayesian inference showed that on a flowering day, the number of pollen grains deposited by bumblebees increased with the proportion of natural habitat in the surrounding landscape, but the number of pollen grains deposited by honey bees did not. Moreover, the total numbers of pollen grains deposited by honey bees or bumblebees alone were all below 2000 (the critical level to satisfy the pollination requirement of this crop). Pollen calculations demonstrated that the number of pollen grains deposited by the two bee taxa was greater than 2000 in fields surrounded by more than 13% natural habitat (grasslands and forests). The results revealed that bumblebees ensured C. pepo pollination in combination with honey bees in the highland agricultural ecosystems.  相似文献   

2.
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.  相似文献   

3.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator‐dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two‐year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well‐targeted floral resources to ensure that they not only survive, but also thrive.  相似文献   

4.
Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.  相似文献   

5.
If climate change affects pollinator‐dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature‐induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change.  相似文献   

6.
Native bees provide insurance against ongoing honey bee losses   总被引:2,自引:0,他引:2  
One of the values of biodiversity is that it may provide 'biological insurance' for services currently rendered by domesticated species or technology. We used crop pollination as a model system, and investigated whether the loss of a domesticated pollinator (the honey bee) could be compensated for by native, wild bee species. We measured pollination provided to watermelon crops at 23 farms in New Jersey and Pennsylvania, USA, and used a simulation model to separate the pollen provided by honey bees and native bees. Simulation results predict that native bees alone provide sufficient pollination at > 90% of the farms studied. Furthermore, empirical total pollen deposition at flowers was strongly, significantly correlated with native bee visitation but not with honey bee visitation. The honey bee is currently undergoing extensive die-offs because of Colony Collapse Disorder. We predict that in our region native bees will buffer potential declines in agricultural production because of honey bee losses.  相似文献   

7.
Despite the global trend in urbanization, little is known about patterns of biodiversity or provisioning of ecosystem services in urban areas. Bee communities and the pollination services they provide are important in cities, both for small-scale urban agriculture and native gardens. To better understand this important ecological issue, we examined bee communities, their response to novel floral resources, and their potential to provide pollination services in 25 neighborhoods across Chicago, IL (USA). In these neighborhoods, we evaluated how local floral resources, socioeconomic factors, and surrounding land cover affected abundance, richness, and community composition of bees active in summer. We also quantified species-specific body pollen loads and visitation frequencies to potted flowering purple coneflower plants (Echinacea purpurea) to estimate potential pollination services in each neighborhood. We documented 37 bee species and 79 flowering plant genera across all neighborhoods, with 8 bee species and 14 flowering plant genera observed on average along each neighborhood block. We found that both bee abundance and richness increased in neighborhoods with higher human population density, as did visitation to purple coneflower flower heads. In more densely populated neighborhoods, bee communities shifted to a suite of species that carry more pollen and are more active pollinators in this system, including the European honey bee (Apis mellifera) and native species such as Agapostemon virescens. More densely populated neighborhoods also had a greater diversity of flowering plants, suggesting that the positive relationship between people and bees was mediated by the effect of people on floral resources. Other environmental variables that were important for bee communities included the amount of grass/herbaceous cover and solar radiation in the surrounding area. Our results indicate that bee communities and pollination services can be maintained in dense urban neighborhoods with single-family and multi-family homes, as long as those neighborhoods contain diverse and abundant floral resources.  相似文献   

8.
Reliable and consistent monitoring is essential for bee conservation. Correctly interpreting the influence of habitat characteristics on native bee communities is necessary to develop effective strategies for bee conservation and to support the provision of pollination services to agricultural crops or natural plant communities. Biases imposed by different sampling methods used to monitor bee populations can affect our ability to discern important habitat characteristics, but the extent of this bias is not well understood. We used three common sampling methods (blue vane traps, colored pan traps, and aerial net collection) to assess bee communities in fragments of Palouse Prairie in eastern Washington and northern Idaho. We determined differences in abundance, species richness, proportional representation of different genera, and functional trait characteristics among the three sampling techniques. We also evaluated differences in the relationships between bee species richness and diversity and two key habitat variables known to mediate bee populations: local plant species richness and the amount of suitable bee habitat in the surrounding landscape. Community metrics for bees collected using blue vane traps were correlated with the amount of suitable habitat in the landscape but not with plant species richness. Conversely, community metrics for bees collected using an aerial net were correlated with the local plant species richness but not with the amount of suitable habitat. Our results indicate that effective conservation of insect communities will require a combination of sampling methods to reliably discern the influence of habitat variables at different scales and across taxa with varying functional traits.  相似文献   

9.
Landscape effects on crop pollination services: are there general patterns?   总被引:2,自引:0,他引:2  
Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies – representing 16 crops on five continents – to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set – variables that directly affect yields – is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.  相似文献   

10.
1. Pollinating insects provide important ecosystem services and are influenced by the intensity of grazing. Based on the Intermediate Disturbance Hypothesis (IDH), pollinator diversity is expected to peak at intermediate grazing intensities. However, this hump‐shaped relationship is rarely found. 2. The effect of grazing intensity was tested on flower cover, on the abundance and richness of bees, hoverflies and bee flies, and on pollination services to early‐flowering bee‐pollinated Asphodelus ramosus L. For that, we used data on 11 plant–pollinator phryganic communities from Lesvos Island (Greece) widely differing in grazing intensities. 3. Flower abundance and richness showed hump‐shaped relationships with grazing intensity. Grazing affected the abundance and richness of bees and hoverflies directly and also indirectly, through changes in the flower community. Grazing influenced directly the richness but not the abundance of bee flies. Overall, pollinator abundance and richness showed hump‐shaped relationships with grazing intensity, but variations in strength (hoverfly abundance) and direction (bee community) of the effect appeared along the season. Early in the season, grazing increased bee abundance but decreased richness, resulting in increased pollen limitation in A. ramosus. 4. The effects of grazing on pollinators vary with the intensity of the disturbance, generally supporting the IDH, and the timing of land‐use activities may influence pollination services. Management strategies should include moderate grazing levels to preserve overall diversity in this area, however, the conservation of particular early bee or bee‐pollinated species may benefit from reduced grazing in early spring.  相似文献   

11.
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee’s pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.  相似文献   

12.
The yield of many agricultural crops depends on pollination services provided by wild and managed bees, many of which are experiencing declines due to factors such as reductions in floral resources. Thus, improving pollinator habitat on farmlands using management strategies like planting wildflower strips is vital for wild bee conservation and sustainable crop pollination. Yet, few studies have examined whether and at what spatial scales wildflower strips enhance crop pollination and yields, and most research has been conducted in large-scale commercial agriculture. Therefore, we investigated the effects of wildflower strips on crop pollination on small, diversified farms (i.e., those growing a variety of crop species) where wild bee diversity and abundance is predicted to be comparatively high. Over three years, on four diversified farms in Montana USA, we tested the hypothesis that distance (20, 60, and 180 m) of crops from native perennial wildflower strips planted alongside crop fields affected wild bee visitation, pollination, and yields of squash and sunflower crop plants. We found that distance to wildflower strips did not affect bee visitation or pollination in crops. Squash yield was pollen-limited in the growing season prior to wildflower strip establishment, and in one of the two years after wildflower strip establishment, but proximity to wildflower strips did not influence the magnitude of pollen limitation. Sunflower seed production was not pollen-limited in any year. Our findings demonstrate that even on diverse farms with wildflower strips and a demonstrated high diversity of bees, some crops do not necessarily receive maximum pollination, regardless of distance from the wildflower strips. However, the value of wildflower strips for supporting wild bee diversity, and other ecological or economic benefits, needs consideration for a full understanding of this pollinator habitat management strategy.  相似文献   

13.
Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum‐likelihood approach can be applied in a meta‐analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator‐friendly habitats, prioritizing species showing a limited dispersal ability.  相似文献   

14.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

15.
Capitol Reef National Park in central Utah, USA surrounds 22 managed fruit orchards started over a century ago by Mormon pioneers. Honey bees are imported for pollination, although the area in which the Park is embedded has over 700 species of native bees, many of which are potential orchard pollinators. We studied the visitation of native bees to apple, pear, apricot, and sweet cherry over 2 years. Thirty species of bees visited the flowers but, except for pear flowers, most were uncommon compared to honey bees. Evidence that honey bees prevented native bees from foraging on orchard crop flowers was equivocal: generally, honey bee and native bee visitation rates to the flowers were not negatively correlated, nor were native bee visitation rates positively correlated with distance of orchards from honey bee hives. Conversely, competition was tentatively suggested by much larger numbers of honey bees than natives on the flowers of apples, apricots and cherry; and by the large increase of native bees on pears, where honey bee numbers were low. At least one-third of the native bee species visiting the flowers are potential pollinators, including cavity-nesting species such as Osmia lignaria propinqua, currently managed for small orchard pollination in the US, plus several fossorial species, including one rosaceous flower specialist (Andrena milwaukiensis). We suggest that gradual withdrawal of honey bees from the Park would help conserve native bee populations without decreasing orchard crop productivity, and would serve as a demonstration of the commercial value of native pollinators.  相似文献   

16.
Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.  相似文献   

17.
Pollen and nectar are usually lumped together as floral rewards for pollinating bees, but they play totally different roles for flowers and bees (Table 1), as well as in the relationship between them. While flowers are specialized for certain pollinators via nectar, bees specialize on certain flowers via pollen. While flowers need pollen as a prerequisite for pollination, it is the essential larval food in bees. Thus, there is a strong competition between them for pollen. Foraging for pollen must be divided into three phases: uptake in the flower, reloading into and homeward transport within a carrying container. Bees have specializations for transport but hardly any for pollen uptake - and thus for pollination. Bees actively harvesting pollen usually do not pollinate. This only happens as a consequence of contamination of the bee by pollen. From these data a scenario is provided for the evolution of bees and bee flowers. Specialized bee flowers are often characterized by their ability to hide pollen from the bees and at the same time use them as optimal pollinators. If the relationship of bees and flowers is mutualistic at all it is best described as a balanced mutual exploitation.  相似文献   

18.
More diverse biological communities may provide ecosystem services that are less variable over space or time. However, the mechanisms underlying this relationship are rarely investigated empirically in real‐world ecosystems. Here, we investigate how a potentially important stabilising mechanism, response diversity, the differential response to environmental change among species, stabilises pollination services against land‐use change. We measured crop pollination services provided by native bees across land‐use gradients in three crop systems. We found that bee species responded differentially to increasing agricultural land cover in all three systems, demonstrating that response diversity occurs. Similarly, we found response diversity in pollination services in two of the systems. However, there was no evidence that response diversity, in general, stabilised ecosystem services. Our results suggest that either response diversity is not the primary stabilising mechanism in our system, or that new measures of response diversity are needed that better capture the stabilising effects it provides.  相似文献   

19.
To know basic information about the stingless bee, Trigona minangkabau, and the European honey bee, Apis mellifera, as pollinator of strawberry, we set three greenhouse areas: the honey bee introduced area, the stingless bee introduced area and the control area. Foraging and pollination efficiencies of the two bee species were studied comparatively. During the experimental period (10 days), the stingless bee foraged well and the nest weight did not change, though the honey bee often foraged inefficiently and the nest weight decreased by 2 kg. The average nectar volume of a flower was lower in the honey bee area (0.02 μl) and nearly the same in the other two areas (0.1 μl). We make a numerical model to describe pollination and fertilization process. This model shows that one visit of the honey bee pollinated 11% of achenes and one visit of the stingless bee did 4.7% on average and that 11 visits of the honey bee or 30 visits of the stingless bee are required per flower to attain normal berry (fertilization rate, 87%). In this study, the rate of deformed berries in the stingless bee area (73%) was lower than that of the control area (90%), but higher than that of the honey bee area (51%). From our numerical model, we conclude the stingless bee could pollinate strawberry as well as the honey bee if we introduced 1.8 times of bees used in this experiment.  相似文献   

20.
By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号