首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the diglyceride lipase inhibitor RHC 80267 on the prolactin secretory process was examined in clonal anterior pituitary GH3 cells. This compound reduced basal prolactin secretion as well as secretion induced by TRH and phospholipase C but not that induced by phorbol myristate acetate. Although exogenous phospholipase C increased diglyceride, no increase in the products of diglyceride lipase was detected. Moreover, low doses of RHC 80267 were observed to effectively block potassium-stimulated 45calcium influx. It is unlikely that RHC 80267 inhibits prolactin release solely by inhibiting diglyceride lipase. These data suggest blockade of plasma membrane calcium channels as an alternate mechanism for the inhibitory actions of RHC 80267 on intact GH3 cells. These observations may have implications for RHC 80267 action in other cell types.  相似文献   

2.
RHC 80267 inhibits diglyceride lipase activity in microsomes from canine platelets (1). Chau and Tai (2) reported that RHC 80267 prevents the transient accumulation of monoglyceride in thrombin-stimulated human platelets, while leaving arachidonate release unimpaired. In contrast, we find that while the drug inhibits both diglyceride lipase (I50=15 μM) and monoglyceride lipase (I50=11 μM) activities in platelet microsomes, it is ineffective when added to intact platelets. The transient intermediates in the diglyceride lipase pathway, 1,2-diglyceride and 2-monoglyceride, both accumulated after thrombin stimulation of intact platelets treated with RHC 80267, and arachidonate release was not inhibited. We conclude that RHC 80267 cannot be used to evaluate the diglyceride lipase pathway in intact platelets.  相似文献   

3.
In the present report, we studied the effect of the diglyceride (DG) lipase inhibitor, RHC 80267 on basal and thyrotropin (TSH) - stimulated prostaglandin (PG) release from rat thyroid lobes Further, we tested the effect of RHC 80267 on phosphatidylinositol phospholipase C (PIPLC), DG lipase, and arachidonate cyclo-oxygenase acdtivities in rat thyroid cytosol, plasma membrane, and whole homogenate preparations, r espectively. Whereas RHC 80267 inhibited DG lipase activity in a dose - re;ated manner from 0.5 – 10 μM (17 – 80% inhibition), it failed either PIPLC or arachidonate cyclo-oxygenase activities by more than 9% when tested at 5 and 10 μM (n = 3). RHC 80267 reduced TSH-stimulated 6-keto-PGF and PGE relase by 100 ± 14% and 57 ± 12%, respectively 9x + S.E.; p < 0.01 for both; n = 10 – 12; the diglyceride lipase inhibitor did not reduce basal release of either PG. These data provide additional evidence which implicate a PIPLC - DG lipase pathway in TSH-stimulated PG synthesis in thyroid.  相似文献   

4.
5.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

6.
7.
Depletion of pituitary prolactin (PRL) and PRL release into culture medium were simultaneously examined over a 3.5- to 4.0-hr incubation period from anterior pituitary fragments obtained from Fischer-344 or Wistar-Furth female rats treated with estrogen for 5 days, in pituitary tumors induced by 8 weeks of diethylstilbestrol (DES) treatment in Fischer-344 rats and in MtTW15 pituitary tumors transplanted subcutaneously in Wistar-Furth rats for 4 weeks. Our objective was to determine if the event known as transformation, which we define as a loss in the tissue PRL content without a corresponding and equivalent increase in the medium PRL content, occurs in rat pituitary tumors. Our results indicated that transformation did not occur in vitro in rat anterior pituitary tumors induced in Fischer-344 rats by DES treatment but was present in pituitaries from Fischer-344 rats treated for 5 days with estrogen, which served as controls. We also observed in vitro transformation in the anterior pituitary of Wistar-Furth rats treated with estrogen for 5 days (controls) and in the pituitaries of Wistar-Furth rats inoculated with the MtTW15 tumor for 4 weeks, but not in the MtTW15 tumor itself. Although transformation was present in both Fischer-344 and Wistar-Furth rats treated acutely with estrogen the timing of the transformation was delayed 1-2 hr in the Fischer-344 rats compared with Wistar-Furth females. We concluded that transformation does not precede release of prolactin in rat pituitary tumors and that in normal pituitaries the mechanisms of transformation are induced differently between the strains of rats examined.  相似文献   

8.
The role of diacylglycerol (DG) as a source of arachidonic acid during gonadotropin-releasing hormone (GnRH) stimulation of gonadotropin secretion was analyzed in primary cultures of rat anterior pituitary cells. An inhibitor of DG lipase (RHC 80267, RHC) caused dose-dependent blockade of GnRH-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. The DG lipase inhibitor did not alter gonadotropin responses to arachidonic acid, and addition of arachidonic acid reversed its inhibition of GnRH-stimulated LH and FSH release. In [3H]arachidonic acid-prelabeled cells, incubation with RHC increased the accumulation of [3H]DG. These results suggest that DG lipase participates in GnRH action and that arachidonic acid mobilization from DG is involved in the mechanism of gonadotropin release. Gonadotropin responses to tetradecanoyl phorbol acetate and dioctanoyl glycerol were not altered by RHC, and the addition of these activators of protein kinase C (Ca2+- and phospholipid-dependent enzyme) did not prevent the inhibition of GnRH-induced gonadotropin release by RHC. Activation of phospholipase A2 by melittin increased LH and FSH secretion, whereas blockade of this enzyme by quinacrine reduced GnRH-stimulated hormone release. However, RHC did not diminish the gonadotropin response to melittin. The inhibitory actions of RHC and quinacrine were additive and were reversed by concomitant treatment with arachidonic acid. Ionomycin also increased LH and FSH release, and the gonadotropin responses to the ionophore were unaltered by RHC but were reduced by quinacrine. Incubation of cells in Ca2+-depleted (+/- [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) medium reduced but did not abolish the LH and FSH releasing activity of GnRH. Treatment with RHC also reduced the gonadotropin responses to GnRH under Ca2+-depleted conditions. These observations indicate that RHC inhibition of GnRH action is not due to nonspecific actions on Ca2+ entry, protein kinase C activation and actions, nor phospholipase A2 enzyme activity. The results of this study provide further evidence for an extracellular Ca2+-independent mechanism of GnRH action, and suggest that GnRH causes mobilization of arachidonic acid by two distinct lipases, namely, phospholipase A2 and DG lipase, during stimulation of gonadotropin secretion.  相似文献   

9.
In this work we analyze the possibility of serotonin (5-HT)-releasing prolactin (PRL) through a direct action at the pituitary level. 5-HT (2 mg/kg i.v.) stimulates PRL secretion in hypophysectomized autotransplanted animals (HAG) significantly and this effect was not influenced by pretreatment with the dopaminergic antagonist domperidone. In perifused pituitaries, 5-HT administration (0.01, 0.1 and 1 microM for 90 min, or 1, 10, 100 microM for 15 min) was ineffective in stimulating PRL release. In pituitaries obtained from animals previously treated with the neurotoxic 5,7-dihydroxytryptamine (5,7-DHT) or vehicle and incubated in the presence of 5-HT (2.5, 5 and 10 microM), no response in PRL secretion was observed. These results suggested that 5-HT does not release PRL through a direct pituitary action, and that the effect observed in HAG animals could be mediated through the release of a PRL-releasing factor after 5-HT administration.  相似文献   

10.
M D Nixon  F Talamantes 《Life sciences》1979,25(22):1901-1907
Mouse anterior pituitaries removed on days 5 through 19 of pregnancy, were incubated for 3 h in the presence of 3H-leucine. Incorporation of radioactivity into electrophoretically separated prolactin in medium and pituitary homogenate was used to determine patterns of prolactin synthesis, release, per cent release and storage. Prolactin synthesis, release and per cent release were high on days 5 through 7, low on days 8 through 16, and intermediate to high on days 18 and 19. Prolactin storage did not change significantly throughout pregnancy.  相似文献   

11.
Bradykinin (BK) is a nonpeptide, originally discovered in blood; recently BK has been localized in neurons and fibers of the hypothalamus. BK is a vasoactive substance which is involved in pain, inflammation and oedema. The present study demonstrates that BK is also a potent stimulator of prolactin (PRL) release from anterior pituitary cells in vitro. A significant enhancement of the release of PRL is observed at 1 nM BK. The stimulation of PRL release by BK is dose-dependent. This work shows that anterior pituitary cells in culture may serve as a useful model system in which to study the mechanism of action of BK.  相似文献   

12.
13.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a role in mediating growth hormone and gonadotropin release in the teleost pituitary. In the present study, we examined the immunohistochemical relationship between PACAP nerve fibers and prolactin (PRL)- and somatolactin (SL)-producing cells in the goldfish pituitary. Nerve fibers with PACAP-like immunoreactivity (PACAP-LI) were identified in the neurohypophysis in close proximity to cells containing PRL-LI or SL-LI. Several cells with PRL-LI or SL-LI showed PACAP receptor (PAC(1)R)-LI. The cell immunoblot assay method was used to examine the effect of PACAP on PRL and SL release from dispersed goldfish pituitary cells. Treatment with PACAP increased the immunoblot area for PRL- and SL-LI from individual pituitary cells in a dose-dependent manner. The effect of PACAP on the expression of mRNAs for PRL and SL in cultured pituitary cells was also tested. Semiquantitative analysis revealed that the expression of SL mRNA, but not PRL mRNA, was increased significantly by the treatment with PACAP. The effect of PACAP on intracellular calcium mobilization in isolated pituitary cells was also investigated using confocal laser-scanning microscopy. The amplitude of Ca(2+) mobilization in individual cells showing PRL- or SL-LI was increased significantly following exposure of cells to PACAP. These results indicate that PACAP can potentially function as a hypophysiotropic factor mediating PRL and SL release in the goldfish pituitary.  相似文献   

14.
15.
Direct stimulation of pituitary prolactin release by glutamate   总被引:4,自引:0,他引:4  
I S Login 《Life sciences》1990,47(24):2269-2275
The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.  相似文献   

16.
17.
D E Blask  K M Orstead 《Life sciences》1986,38(21):1915-1921
The hypothalamic mechanisms controlling prolactin (PRL) cell function in the male Syrian hamster are unclear. Equally unclear is the role of dopamine (DA) in regulating lactotrophic cell activity in long photoperiod-exposed hamsters particularly with respect to PRL synthesis and release. The synthesis of PRL, as measured by the incorporation of 3H-leucine into newly synthesized PRL, by anterior pituitary glands from male hamsters is linear over a five h incubation period. Approximately two-fold more 3H-PRL remained in the pituitary glands than in the medium by the end of the incubation period. The incubation of hamster hemipituitaries with DA at concentrations of either 5 X 10(-7) M or 5 X 10(-5) M, resulted in a 77% to 83% inhibition of the release of immunoreactive PRL into the medium as compared with controls. Similarly, the release of 3H-PRL into the medium was inhibited by 71% to 76% as compared with controls; however, the synthesis of PRL was virtually the same among the experimental and control groups. These results suggest that DA may be an important regulator of short-term PRL release but not synthesis in the long photoperiod-exposed male hamster.  相似文献   

18.
Anterior pituitary (AP) tissue grafted into the hypothalamus of female rats inhibits the luteotrophic prolactin (PRL) secretion which normally follows mating. Dopamine blockade has been shown to overcome this inhibition, suggesting that the grafts suppress PRL release from the in situ pituitary by the action of graft PRL increasing dopamine activity in the hypothalamus. To examine whether PRL levels in the cerebrospinal fluid (CSF) were elevated by the AP grafts, CSF samples were taken from 5 control rats and 10 rats bearing intrahypothalamic AP grafts. Mean PRL concentrations in the CSF of the control rats were 3.0 +/- 0.8 ng/ml. The grafted rats had significantly higher concentrations of PRL in their CSF, averaging 23.2 +/- 4.2 ng/ml (P less than 0.005). Plasma PRL concentrations were similar in the control and grafted rats. PRL release in response to 5 min of ether stress was examined in 8 control and 11 grafted rats. In control animals, PRL rose from 4.2 +/- 1.5 to 44.7 +/- 9.0 ng/ml following exposure to ether, but the response was significantly attenuated in the grafted rats, peaking at 9.3 +/- 1.4 ng/ml (P less than 0.001). This inhibition of response due to the grafts was evident within 1 week of graft placement. The results confirm that the presence of intrahypothalamic AP grafts led to the accumulation of supranormal PRL concentrations in the CSF. This elevated PRL suppressed pituitary PRL release in response to ether stress, probably by an autoregulatory feedback activation of the inhibitory tuberoinfundibular dopaminergic neurons in the hypothalamus.  相似文献   

19.
Diacylglycerol lipase and kinase activities in rat brain microvessels   总被引:5,自引:0,他引:5  
Diacylglycerols can accumulate transiently in intact cells as a consequence of the degradation of phosphatidylinositol by phospholipase C, but little information is available concerning their metabolic fate in the vascular endothelium. Diacylglycerol lipase and kinase activities were measured in rat brain microvessel preparations. Lipase activity, measured by the release of free fatty acids, was much greater at pH 4.5 than at pH 7. The acid lipase was predominantly particulate and likely originated in lysosomes, whereas the neutral lipase was mainly soluble. The fatty acid at the sn-1 position of the diacylglycerol substrate was hydrolyzed faster than that at the sn-2 position at both pH 4.5 and 7. The 2-monoacylglycerol accumulated at pH 4.5 but not at 7 due to the presence of a monoacylglycerol lipase activity with a neutral pH optimum. The formation of phosphatidic acid (kinase activity) was also measured in microvessels. When lipase and kinase activities were measured simultaneously, the formation of phosphatidic acid from a 1-palmitoyl-2-[1-14C]oleoyl-sn-glycerol substrate was 4-fold greater than the release of fatty acid (oleate) from the sn-2 position. Introduction of arachidonic acid to the sn-2 position of the diacylglycerol substrate increased kinase activity but reduced lipase activity. The release of fatty acids from the sn-2 position of phosphatidic acid could not be detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号