首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A new assay has been developed to study the osmotic fragility of red blood cells (RBCs) and the involvement of oxygen-derived free radicals and other oxidant species in causing human red blood cell hemolysis. The amount of hemoglobin released into the supernatant, which is a measure of human red blood cell hemolysis, is monitored using an ELISA reader. This ELISA-based osmotic fragility test compared well with the established osmotic fragility test, with the added advantage of significantly reduced time and the requirement of only 60 mul of blood. This small amount of blood was collected fresh by finger puncture and was immediately diluted 50 times with PBS, thus eliminating the use of anticoagulants and the subsequent washings. Since exposure of RBCs to 400 Gy gamma radiation caused less than 5% hemolysis 24 h after irradiation, the RBC hemolysis induced by gamma radiation was amplified by irradiating the cell in hypotonic saline. The method was validated by examining the protective effect of Trolox, an analog of vitamin E and reduced glutathione (GSH), a well-known radioprotector, against human RBC hemolysis caused by the combined action of radiation and osmotic stress. Trolox, a known membrane stabilizer and an antioxidant, and GSH offered significant protection. This new method, which is simple and requires significantly less time and fewer RBCs, may offer the ability to study the effects of antioxidants and membrane stabilizers on human red blood cell hemolysis induced by radiation and oxidative stress and assess the osmotic fragility of erythrocytes.  相似文献   

2.
Polymer has been used as substitute to replace glycerol for cryopreservation of red blood cells (RBCs). But polymer can not penetrate cell membrane, it can not efficiently protect the inner membrane. In this study, RBCs were incubated with glucose, fructose, galactose or trehalose and frozen in liquid nitrogen for 24 h using dextran as the extracellular protectant. The postthaw quality was assessed by RBC hemolysis, RBC morphology, PS distribution, osmotic fragility, and the 4 °C stability. The results indicated the loading efficiency of monosaccharide was significantly higher than that of trehalose. Adding trehalose and 40% dextran caused more serious hemolysis before freezing. The percent hemolysis of RBCs loaded with high concentration of trehalose was approximately 16% and significantly more than that of RBCs loaded with glucose (approximately 5%, P < 0.05). Intracellular trehalose can not increase the postthaw recovery of RBCs compared with cells frozen without sugar. However, low concentration of intracellular glucose or galactose can reduce the percent hemolysis to less than 5% and significantly less than that of RBCs frozen without sugar (P < 0.05). Finally, the ability of galactose or fructose to maintain the 4 °C stability was significantly more than that of glucose. In conclusion, the injuries caused by trehalose loading may directly lead to postthaw hemolysis and poor quality of RBCs. However, monosaccharide can enhance the recovery of frozen RBCs. The cryoprotective effect of galactose may be better than that of glucose or fructose. In the future, we will continue to look for a safe and efficient trehalose loading process and try to decrease the osmotic fragility of RBCs frozen with polymers and sugars.  相似文献   

3.
Red blood cells (RBCs) from various animals, when exposed to oxidative burst (OB)-stimulated mouse macrophages, showed differences in sensitivity to OB dependent lysis. The increasing order of sensitivity was: mouse, hamster, rabbit, guinea pig, sheep and human RBCs. The degree of OB dependent hemolysis did not correlate with either the capacity of the various cells to degrade H2O2 or their osmotic fragility. The relative sensitivity of the various RBCs to OB products generated by macrophages concurred with their sensitivity to H2O2 generated by an enzymatic system. The differential sensitivity may be correlated with the sphingomyelin content of the cells.  相似文献   

4.
The purpose of this study was to determine if differences in antioxidant status between the red blood cells (RBCs) of sickle cell anemia (SCA) patients and controls are responsible for the differential responses to oxidative and osmotic stress-induced hemolysis. Susceptibility to hemolysis was examined by incubating oxygenated and deoxygenated RBCs at 37°C with 73 mM 2,2' azobis (2-amidinopropane) HC1 (AAPH), a peroxyl radical generator, for up to 3.5 hours. The ability of RBCs to maintain membrane integrity under osmotic stress was determined over a range of diluted saline-phosphate buffer. Sickled RBCs showed a lesser degree of AAPH-induced hemolysis than control groups and were more resistant to osmotic stress-induced hemolysis. SCA patients had higher levels of RBC vitamin E and RBC lipids, but lower RBC GSH, plasma lipids and plasma carotenes than those of the hospital controls. No significant differences were observed in the levels of retinol, vitamin C, vitamin E, MDA and conjugated dienes in plasma, or the levels of MDA and conjugated dienes in RBCs. The results obtained suggest that the differences in antioxidant status between sickled RBCs and controls do not appear to be responsible for their different susceptibility to oxidative or osmotic stress-induced hemolysis observed.  相似文献   

5.
Theoretical osmotic fragility curves were calculated and drawn by computer using the van't Hoff equation and the isotonic areas and volumes of 1000 individual erythrocytes. We studied the influence on the calculated curves of theoretically altering the fraction of the volume which was osmotically active from 50 to 70%, and of altering the permissible stretch before hemolysis from zero to 10%. With the two assumptions–that the membrane does not stretch before hemolysis, and that the osmotically active fraction of the cell volume is 0.58–it was possible to duplicate the general shape of the standard fragility curve; the exact NaCl concentration, however, at which there was 50% hemolysis was approximately 0.1 gm/100 ml higher than found in vitro. The calculated osmotic fragility curves can be made quantitatively similar to in vitro ones if the following statements are true: the osmotically active volume is 58%, the permissible stretch of the membrane without lysis is 6%, the cell membrane resists a slight osmotic pressure gradient of approximately 0.1 atmospheres, and hemolysis is an all or nothing phenomenon. This set of values for the relevant factors is sufficient but not unique in causing the superposition of the calculated and experimental curves. The frequency distribution of the cells according to the hemolytic salt concentrations (the sodium chloride concentration at which an individual cell just hemolyzes) was skewed positively and was leptokurtic for each of the seven normal subjects studied.  相似文献   

6.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

7.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

8.
q-Space plots obtained experimentally using pulsed field-gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) spectroscopy from water diffusing in red blood cells (RBCs) of different canonical (distinct variant) morphologies have “signature” features. The experimental q-space plots from suspensions of stomatocytes, echinocytes and spherocytes generated chemically had no diffraction features; in contrast a sample of blood from a patient with hereditary spherocytosis showed diffraction minima. To understand the forms of q-space plots, mathematical/geometrical models of discocytes, stomatocytes, echinocytes and spherocytes were used as restricting boundaries in simulations of water diffusion with Monte Carlo random walks. These simulations indicated that diffusion-diffraction minima are expected for each of the cell shapes considered. The absence of diffusion-diffraction minima in stomatocytes generated by dithiothreitol treatment was surmised to be due to non-alignment of the cells with the magnetic field of the NMR spectrometer. Differential interference contrast microscopy images of the chemically generated spherocyte and echinocyte suspensions showed them to be heterogeneous in cell shape. Therefore, we concluded that the shape heterogeneity caused the loss of the diffusion-diffraction features, which were observed in the more homogeneous sample from a patient with hereditary spherocytosis, and in the simulations of homogeneous cell suspensions. This understanding of factors that affect q-space plots from RBC suspensions will assist morphological studies of other cell and tissue types.  相似文献   

9.

Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.

  相似文献   

10.
A method for measuring the mechanical fragility of red blood cells suitable for use in small laboratory animals, such as rats, is reported because of lack of such data in the literature. Whole blood is mixed with phosphate buffered saline in a tube containing glass beads. The tubes are rocked for 90 minutes, centrifuged and the percent hemolysis determined. Varying the osmolality of the saline suspending medium had little effect on the mechanical fragility of rat red cells prior to the NaCl concentrations at which a significant change in osmotic hemolysis occurred. The duration of rocking increased the mechanical fragility. Varying the pH (6.4-8.0) had no effect. The size of the glass beads changed the mechanical fragility as did varying temperature. The mean mechanical fragility of rat red blood cells was 46% hemolysis (80 adult male animals). Because of the small volume of blood required with this method, mechanical fragility of red cells of other small laboratory animals also may be determined.  相似文献   

11.
A rapid, microturbidimetric method for recording red cell osmotic fragility using a Platelet Aggregometer is described. This method requires only 0.2 ml of whole blood and a fragility curve of 20 points can be determined in less than 1 hr. Measurement of the degree of hemolysis is based on the increasing transparency of the erythrocyte suspension when hemolysis takes place. Erythrocytes of immature animals are osmotically more resistant than those of adults and the change in osmotic resistance is not directly related to the percentage of reticulocytes.  相似文献   

12.
Hereditary spherocytosis (HS), an erythrocyte membranopathy, is a heterogeneous disease, even at the level of the erythrocyte population. The paper aims at studying the mechanical properties (the Young’s modulus, median and RMS roughness of friction force maps; fractal dimension, lacunarity and spatial distribution parameters of lateral force maps) of the cell surface layer of the erythrocytes of two different morphologies (discocytes and spherocytes) in HS using atomic force microscopy. The results of spatial-spectral and fractal analysis showed that the mechanical property maps of the HS spherocyte surface were more structurally homogeneous compared to the maps of HS discocytes. HS spherocytes also had a reduced RMS roughness and lacunarity of the mechanical property maps. The Young’s modulus and averaged friction forces over the microscale HS spherocyte surface regions were approximately 20% higher than that of HS discocytes. The revealed significant difference at the nano- and microscales in the structural and mechanical properties of main (discoidal and spheroidal) morphological types of HS erythrocytes can potentially cause blood flow disturbance in the vascular system in HS.  相似文献   

13.
Bönsch C  Kempf C  Ros C 《Journal of virology》2008,82(23):11784-11791
The unique region of the capsid protein VP1 (VP1u) of B19 virus (B19V) elicits a dominant immune response and has a phospholipase A2 (PLA2) activity required for the infection. Despite these properties, we have observed that the VP1u-PLA2 motif occupies an internal position in the capsid. However, brief exposure to increasing temperatures induced a progressive accessibility of the PLA2 motif as well as a proportional increase of the PLA2 activity. Similarly, upon binding on human red blood cells (RBCs), a proportion of the capsids externalized the VP1u-PLA2 motif. Incubation of B19V with RBCs from 17 healthy donors resulted in extensive virus attachment ranging between 3,000 and 30,000 virions per cell. B19V empty capsids represent an important fraction of the viral particles circulating in the blood (30 to 40%) and bind to RBCs in the same way as full capsids. The extensive B19V binding to RBCs did not cause direct hemolysis but an increased osmotic fragility of the cells by a mechanism involving the PLA2 activity of the exposed VP1u. Analysis of a blood sample from an individual with a recent B19V infection revealed that, at this particular moment of the infection, the virions circulating in the blood were mostly associated to the RBC fraction. However, the RBC-bound B19V was not able to infect susceptible cells. These observations indicate that RBCs play a significant role during B19V infection by triggering the exposure of the immunodominant VP1u including its PLA2 constituent. On the other hand, the early exposure of VP1u might facilitate viral internalization and/or uncoating in target cells.  相似文献   

14.
A mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane, elasticity and critical tension of membrane) through their sphering and lysis measured by a scanning flow cytometer (SFC). SFC allows measuring the light-scattering pattern (indicatrix) of an individual cell over the angular range from 10° to 60°. Comparison of the experimentally measured and theoretically calculated light scattering patterns allows discrimination of spherical from non-spherical erythrocytes and evaluation of volume and hemoglobin concentration for individual spherical cells. Three different processes were applied for erythrocytes sphering: (1) colloid osmotic lysis in isotonic solution of ammonium chloride, (2) isovolumetric sphering in the presence of sodium dodecyl sulphate and albumin in neutrally buffered isotonic saline, and (3) osmotic fragility test in hypotonic media. For the hemolysis in ammonium chloride, the evolution of distributions of sphered erythrocytes on volume and hemoglobin content was monitored in real-time experiments. The analysis of experimental data was performed in the context of a statistical approach, taking into account that parameters of erythrocytes vary from cell to cell.  相似文献   

15.
Red cell osmotic hemolysis has traditionally been defined by the loss of hemoglobin, in response to reduced osmotic pressure, as measured spectroscopically. Previous work from this laboratory using resistive pulse spectroscopy (RPS) has shown that in a mixed population of hemolyzing cell, ghosts can be detected as being more deformable, and hence appearing distinctly smaller, than the remaining intact cells. Other researchers using similar methods have reported detection of ghosts as apparently smaller objects, resulting from their greater sensitivity to dielectric breakdown. We now confirm both of these results, and demonstrate by kinetic studies that changes which occur in the rheological and electrical properties of ghosts are independent phenomena. We include in our analysis the explicit calculation of ghost and intact spherocyte resistivity after dielectric breakdown. The two different characterizations for ghosts are integrated into a proposed model of osmotic hemolysis based on known red blood cell membrane and cytoplasmic properties. This work provides both a theoretical and a practical foundation for RPS-based measures of osmotic fragility, including a potential new clinical test, measures which provide very early detection of the ultimate fate of osmotically stressed red cells.  相似文献   

16.
Thalassemia is the world’s most common hereditary disease; therefore, more interest has been devoted for the development of the screening procedure of this disease. In β-thalassemia major, the subject of the current study, impaired biosynthesis of beta-globin leads to accumulation of unpaired alpha-globin chain. The objective of the present study, was to examine many of the biophysical properties of β-thalassemia major red blood cells (RBCs) and to study the possibility of use of any of them as a preliminary screening tool for β-thalassemia. The percentage of normal hemolysis, osmotic fragility test, turbidity test, rheological properties, and dielectric properties, were studied in 20 regularly blood transfused thalassemia major patients who were under chelation therapy and their status were compared with those of 10 healthy subjects. There was an increase in the percentage of hemolysis for β-thalassemia by 114.6% compared to the normal RBCs. The fragility curve for β-thalassemia RBCs showed a shift toward lower NaCl concentration compared to the normal curve. The average osmotic fragility (H 50: the NaCl concentration producing 50% homolysis) for β-thalassemia was found to be 3.21 ± 0.67 g/l, whereas for normal RBCs it was 5.5 ± 0.31 g/l. The turbidity curve of the β-thalassemic RBCs showed a shift toward higher detergent concentration of the normal curve, with higher value for the average membrane solubilization (S 50). The viscosity value of whole blood β-thalassemia was found to be 3.916 ± 0.56 cp whereas for normal blood was 2.516 ± 0.36 cp. The relative permittivity, dielectric loss, and AC conductivity of RBCs decreased significantly compared to normal samples. This could be attributed to the loss of the insulating properties of the membrane and loss of its surface charge of thalassemic RBCs. As can be noticed, several factors showed clear difference between thalassemic and normal blood samples. Some of these parameters could be measured immediately after sample withdrawal and require short time to perform the measurements. This offers the advantages of being effective, low cost, and fast techniques, therefore, we suggest that these techniques could be applied for β-thalassemia major screening purposes.  相似文献   

17.
The effects of monopalmitoylphosphatidylcholine (MPPC or lysophosphatidylcholine) and a series of short-chain primary alcohols (ethanol, 1-butanol and 1-hexanol) on cell shape, hemolysis, viscoelastic properties and membrane lipid packing of human red blood cells (RBCs) were studied. For MPPC, the effective membrane concentration to induce the formation of stage 3 echinocytes (8 x 10(6) molecules per cell) was one order of magnitude lower than that needed to induce 50% hemolysis (7 x 10(7) molecules per cell). In contrast, short-chain alcohols induced both shape changes and hemolysis within close concentration range (2.5 x 10(8) to 3.5 x 10(8) molecules per cell). Viscoelastic properties of the RBCs were studied by micropipette aspiration and correlated with shape change. Ethanol-treated RBCs showed a decrease in membrane elastic modulus and an increase in membrane viscosity in the recovery phase at the early stage of shape change. MPPC-treated cells showed the same type of viscoelastic changes, but these were not observed until the formation of stage 2 echinocytes. High-resolution solid-state 13C nuclear magnetic resonance technique was applied to study membrane lipid packing in the ghost membrane by following the chemical shift of hydrocarbon chains. Both MPPC and ethanol caused the 13C-NMR chemical shift to move upfield, indicating that membrane lipids were expanded due to the intercalation of these exogenous molecules. Using data obtained from model compounds, we convert values of chemical shift into a lipid packing parameter, i.e., number of gauche bonds for fatty acyl hydrocarbon chains. Approximately 10(8) interacting molecules per cell are required to induce a detectable change of lipid packing by both MPPC and ethanol. The results indicate that homolysis occurs at a smaller surface area for MPPC- than ethanol-treated RBCs. Our findings suggest that progressive changes in the molecular packing in the membrane lead eventually to hemolysis, but the mode responsible for shape transformation varies with these amphipaths.  相似文献   

18.
Quan GB  Han Y  Liu MX  Fang L  Du W  Ren SP  Wang JX  Wang Y 《Cryobiology》2011,(2):135-144
Although incubation with glucose before freezing can increase the recovery of human red blood cells frozen with polymer, this method can also result in membrane lesions. This study will evaluate whether addition of oligosaccharide (trehalose, sucrose, maltose, or raffinose) can improve the quality of red blood cell membrane after freezing in the presence of glucose and dextran. Following incubation with glucose or the combinations of glucose and oligosaccharides for 3 h in a 37 °C water bath, red blood cells were frozen in liquid nitrogen for 24 h using 40% dextran (W/V) as the extracellular protective solution. The postthaw quality was assessed by percent hemolysis, osmotic fragility, mean corpuscle volume (MCV), distribution of phosphatidylserine, the postthaw 4 °C stability, and the integrity of membrane. The results indicated the loading efficiency of glucose or oligosaccharide was dependent on their concentrations. Moreover, addition of trehalose or sucrose could efficiently decrease osmotic fragility of red blood cells caused by incubation with glucose before freezing. The percentage of damaged cell following incubation with glucose was 38.04 ± 21.68% and significantly more than that of the unfrozen cells (0.95 ± 0.28%, P < 0.01). However, with the increase of the concentrations of trehalose, the percentages of damaged cells were decreased steadily. When the concentration of trehalose was 400 mM, the percentage of damaged cells was 1.97 ± 0.73% and similar to that of the unfrozen cells (P > 0.05). Moreover, similar to trehalose, raffinose can also efficiently prevent the osmotic injury caused by incubation with glucose. The microscopy results also indicated addition of trehalose could efficiently decrease the formation of ghosts caused by incubation with glucose. In addition, the gradient hemolysis study showed addition of oligosaccharide could significantly decrease the osmotic fragility of red blood cells caused by incubation with glucose. After freezing and thawing, when both glucose and trehalose, sucrose, or maltose were on the both sides of membrane, with increase of the concentrations of sugar, the percent hemolysis of frozen red blood cells was firstly decreased and then increased. When the total concentration of sugars was 400 mM, the percent hemolysis was significantly less than that of cells frozen in the presence of dextran and in the absence of glucose and various oligosaccharides (P < 0.01). However, when both glucose and trehalose were only on the outer side of membrane, with increase of the concentrations of sugars, the percent hemolysis was increased steadily. Furthermore, addition of oligosaccharides can efficiently decrease the osmotic fragility and exposure of phosphatidylserine of red blood cells frozen with glucose and dextran. In addition, trehalose or raffinose can also efficiently mitigate the malignant effect of glucose on the postthaw 4 °C stability of red blood cells frozen in the presence of dextran. Finally, addition of trehalose can efficiently protect the integrity of red blood cell membrane following freezing with dextran and glucose. In conclusion, addition of oligosaccharide can efficiently reduce lesions of freezing on red blood cell membrane in the presence of glucose and dextran.  相似文献   

19.
We recently identified a voltage-dependent anion channel on the surface of human red blood cells (RBCs) infected with the malaria parasite, Plasmodium falciparum. This channel, the plasmodial erythrocyte surface anion channel (PESAC), likely accounts for the increased permeability of infected RBCs to various small solutes, as assessed quantitatively with radioisotope flux and patch-clamp studies. Whereas this increased permeability has also been studied by following osmotic lysis of infected cells in permeant solutes, these experiments have been limited to qualitative comparisons of lysis rates. To permit more quantitative examination of lysis rates, we have developed a mathematical model for osmotic fragility of infected cells based on diffusional uptake via PESAC and the two-compartment geometry of infected RBCs. This model, combined with a simple light scattering assay designed to track osmotic lysis precisely, produced permeability coefficients that match both previous isotope flux and patch-clamp estimates. Our model and light scattering assay also revealed Michaelian kinetics for inhibition of PESAC by furosemide, suggesting a 1:1 stoichiometry for their interaction.  相似文献   

20.
Phenylalanine or tryptophan entrapped in small unilamellar liposomes was used to transport Phe or Trp across the red blood cell membrane. The incorporation of Phe or Trp into RBCs via liposomes markedly inhibited and reversed the in vitro sickling of deoxy Hb S. Furthermore, normal and SS RBCs loaded with Phe or Trp did not exhibit significant change in osmotic fragility, mechanical fragility, autohemolysis, and glycolysis when compared to untreated RBCs. In addition, the oxygen affinity measured as the P50 and concentrations of 2,3-DPG and ATP were not affected by the incorporation of Phe or Trp into AA or SS RBCs. These results demonstrate that this liposomal transport system which transferred Phe and Trp into intact RBCs did not have any adverse effect on RBC metabolism and function, and may have therapeutic implications in the treatment of sickle cell disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号