首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Total species richness for an assemblage or site is a valuable measure in conservation monitoring and assessment, but protocols for sampling and species richness determination in wetland habitats such as ponds, bogs or mires remain largely unrefined. 2. Techniques for estimation of total richness of an assemblage based upon replicated sampling offer the opportunity to derive useful estimates of total richness based upon small numbers of samples, and limit sampling‐derived disturbance which can be particularly problematic in small aquatic habitats. 3. We quantified the performance of eight of the most commonly encountered estimators of species richness for a variety of littoral zone macrofauna from ponds, comparing estimated richness to maximum richness derived from sampling. 4. Estimates using non‐parametric techniques based on species incidence provided the most accurate and precise estimates. The estimators Chao 2 and incidence‐based coverage estimator (ICE) from this category were reliable and consistent slight over‐estimators; the abundance‐based estimator Chao1 also performed well. 5. Species inventory based on relatively small numbers of samples might be significantly improved by use of non‐parametric estimators for quantification of species richness. 6. Use of non‐parametric estimators of species richness can assist biodiversity inventory by preventing erroneous rankings of habitat richness based upon observed species numbers from limited sampling.  相似文献   

2.
Abstract  Informed spray decisions require accurate assessments of the target pest's density. Currently, no advice is provided to farmers on the best method for sampling soybean for insect pests, although spray thresholds for Helicoverpa larvae are provided. This article describes the results of a trial designed to calibrate relative sampling techniques for Helicoverpa larvae; visual inspection of plants in situ in the field, beat cloth, sweep net and D-vac sampling were compared with an absolute measure of population density. The absolute measure was derived from the bagging and removal of whole plants in the field, followed by subsequent examination in the laboratory. Analysis of the distribution of Helicoverpa larvae collected by the different samples was then used to calculate the number of samples required to determine whether the economic threshold had been reached to different levels of certainty and accuracy. Significant relationships were detected between all the relative sampling techniques and the absolute, suggesting that all could be used to estimate field populations. However, due to the high variance and therefore increased sample sizes required, or the length of time taken to collect samples, only beat-cloth sampling appeared to offer a realistic method for farmers in the field. The results also suggest that the current best practice of sampling six locations per crop provides an adequate assessment of the field populations at the currently accepted threshold level of 6 larvae m−2. However, if the economic spray was reduced, the number of samples required to determine an accurate population estimate would increase dramatically.  相似文献   

3.
Abstract Ants play an important role in Australian biodiversity and environmental impact assessments, with pitfall-trapping being the principal sampling method. However, the relationship between trap diameter and ant species catch has not been investigated in the context of survey design. Using four different trap diameters, each at a density of one trap per 100 m2, the present study asks three questions: (i) given an equal number of traps, do traps with larger diameters catch more species than smaller-diameter traps?; (ii) do traps with small diameters bias against large or rare species?; (iii) for equal area of the trap mouth, do small but more numerous traps catch more species than fewer but large traps? A total of 84 species were sampled within the 1600 m2 study site, with numbers of species for trap diameters of: 18mm (46 species), 42mm (56 species), 86mm (62 species) and 135mm (64 species). At equal trap density, 18 mm traps caught significantly fewer species than larger traps. Traps of 86 mm and 135mm were no more efficient than 42mm traps. Only 86mm and 135mm traps caught all species > 10mm in length (6 species). For equal area of the trap mouth, small traps were more efficient than large traps. Differences in the catch of the different-sized traps were due primarily to different capture rates of the rare species (40 species): 18mm traps caught 25% of rare species, 42 mm caught 41%, 86 mm caught 44% and 135 mm caught 52%. The role of rare ant species in environmental impact studies is discussed.  相似文献   

4.
Pitfall trapping is a sampling technique extensively used to sample surface foraging invertebrates for biological diversity studies and ecological monitoring. To date, very few invertebrate studies have considered what trap size is optimal for sampling spiders. This study presents preliminary findings from a single short sampling period on the role of trap size in sampling spiders in a Western Australian Jarrah forest. Four different trap diameters (4.3, 7.0, 11.1 and 17.4 cm) were examined (4 trap sizes × 15 replicates = 60 traps). Two-way ANOVAs revealed no significant interaction effects between trap size or the spatial positioning of transects within the study site along which the pitfall traps were arranged. Post-hoc tests revealed abundance, family richness and species richness increased with increasing trap sizes for traps 7.0 cm. No significant differences in these dependent variables occurred between 4.3 and 7.0 cm traps, or for species richness between 11.1 and 17.4 cm traps. Determination of an optimal trap size was undertaken by bootstrapping and calculating species accumulation curves for increasing numbers of traps used. Three different criteria were considered: equivalent number of traps (15), standardized sampling intensity (cumulative trap circumference, approximately 207 cm) and standardized cumulative handling time (approximately 1 hour 17 minutes). The largest trap size (17.4 cm) was most efficient in terms of number of traps and trap circumference. For the same number of traps, it caught 19 species whereas all other trap sizes caught ten species. At the standardized circumference, it caught seven species whereas all other trap sizes caught five. For handling time, however, the two largest trap sizes (17.4 and 11.1 cm) were optimal. Both caught nine species whereas all other traps caught 相似文献   

5.
Macro‐scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample‐size‐correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species‐rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second‐order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with “big data” collections.  相似文献   

6.
Aim  We quantify the elevational patterns of species richness for all vascular plants and some functional and taxonomic groups on a regional scale on a tropical mountain and discuss some possible causes for the observed patterns.
Location  Mount Kinabalu, Sabah, Borneo.
Methods  A data base containing elevational information on more than 28,000 specimens was analysed for vascular plant distribution, taking into account sampling effort. The total species richness pattern was estimated per 300-m elevational interval by rarefaction analyses. The same methods were also applied to quantify species richness patterns of trees, epiphytes, and ferns.
Results  Total species richness has a humped relationship with elevation, and a maximum species richness in the interval between 900 and 1200 m. For ferns and epiphytes the maximum species richness is found at slightly higher elevations, whereas tree species did not have a statistically significant peak in richness above the lowest interval analysed.
Main conclusions  For the first time a rigorous estimate of an elevational pattern in species richness of the whole vascular plant flora of a tropical mountain has been quantified. The pattern observed depends on the group studied. We discuss the differences between the groups and compare the results with previous studies of elevational patterns of species richness from other tropical areas. We also discuss the methods used to quantify the richness pattern and conclude that rarefaction gives an appropriate estimate of the species richness pattern.  相似文献   

7.
The role of species richness for recruitment in a seminatural grassland   总被引:1,自引:0,他引:1  
Daniel Franzn 《Oikos》2001,95(3):409-415
I examined two aspects of how recruitment is influenced by species richness in a seminatural grassland: effects of species richness among colonisers in a seed mixture, and effects of species richness, ramet density, grass and moss cover in the colonised vegetation. The results suggest that recruitment is higher in more species-rich seed mixtures (for three of the four target species: Anthyllis vulneraria, Centaurea jacea, Filipendula vulgaris and Primula veris ). Average recruitment of the target species was negatively related to ramet density in the colonised vegetation, but not affected by grass or moss cover. The results imply that mechanisms other than interspecific competition among species are important in structuring the community during the recruitment phase. The negative effects of ramet density and the positive effects of species richness may be a result of strong intra-specific competition, or species-independent competition in combination with diversity effects enhancing microsite variability.  相似文献   

8.
To clarify the effects of forest fragmentation in urban landscapes on the abundance, species richness, dominance, and species composition of ground beetles (Coleoptera: Carabidae and Brachinidae), we compared the beetles collected in 12 pitfall traps from April to July and from September to November between three continuous suburban forests and eight isolated urban forests (0.06–1.02 ha), most of which were in the precincts of shrines and temples in Hanshin District, Honshu, Japan. A total of 28 species and 4178 individuals of ground beetles were collected. Segregation of urban forests from continuous suburban forests has changed the species composition and resulted in the loss of some large‐sized forest species and the addition of some non‐forest species. Simpson's index of dominance (λ) also increased in the urban forests. The richness of forest species markedly decreased with the reduction in forest area but not with the distance from continuous forests, although the species richness of non‐forest species did not change with them. Also, species composition changed only with forest area. These findings indicate that continuous forests do not necessary serve as a “mainland” for urban forest species and that every urban habitat, however small in size, acts as a temporary reservoir of species. In comparison with populations of small‐sized species, populations of large‐sized forest species appeared to decline more readily during forest fragmentation.  相似文献   

9.
10.
Switzerland's governmental ‘Biodiversity Monitoring’ program is designed to produce factual information on the dynamics of biodiversity within the country for governmental agencies, politicians, and the general public. Monitoring a complex issue like biodiversity in order to give relevant and accurate messages to the general public and politicians within a politically relevant timescale and at moderate cost means focusing on few elements. Because relevant human impacts on biodiversity operate differently at different spatial scales, we need at least three different indicators to observe changes over time in local (‘within‐habitat’), landscape (‘habitat‐mosaic’), and macro‐scale (‘regional’) diversity. To keep things as simple as possible, we use species richness as an indicator for all three levels of diversity, just defining three different spatial scales (10 m2, 1 km2, regions, respectively). Each indicator is based on a number of taxonomic groups which have been selected mainly on the basis of costs and the availability of appropriate methods.  相似文献   

11.
Aim To study the altitudinal variation of ground spiders (Araneae, Gnaphosidae) of Crete, Greece, as far as species composition, species richness, activity and range of distribution are concerned. Location Altitudinal zones (0–2400 m) along the three main mountain massifs of the island of Crete. Methods Thirty‐three sampling sites were located from 0 to 2400 m a.s.l. on Crete, and sampled using pitfall traps. Material from the high‐activity period of Gnaphosidae (mid‐spring to mid‐autumn) was analysed. Sampling sites were divided into five altitudinal zones of 500 m each. Statistical analysis involved univariate statistics (anova ) and multivariate statistics, such as multidimensional scaling (MDS) and cluster analysis (UPGMA) using binomial data of species presence or absence. Results Species richness declines with altitude and follows a hump‐shaped pattern. The activity pattern of the family, as a whole, is not correlated with altitude and is highly species‐specific. In the highest zone, both species richness and activity decline dramatically. The altitudinal range of species distribution increases with altitude. On the Cretan summits live highly tolerant lowland species and isolated residents of the high mountains of Crete. Two different patterns of community structure are recorded. Main conclusions Communities of Gnaphosidae on Crete present two distinct structures following the altitudinal gradient, these being separated by a transitional zone between 1600 and 2000 m. This study supports previous results which show a hump‐shaped decline in species richness of Gnaphosidae along altitudinal gradients, leading to a peak at 400–700 m, where an optimum of environmental factors exists. This makes this zone the meeting point of the often opportunistic lowland species with the older and most permanent residents of the island. Rapoport's rule on the positive correlation of the altitudinal range of species distributions with altitude is also supported. The high activity recorded for the species that persist on the high mountains of Crete is indicative of a tolerant arachnofauna, and is considered to result from relaxation of competitive interactions with other species. This is related to a reduction in species numbers, shortening of the activity period on high mountains and the unique presence of high mountain species that thrive only there. As shown in our study, strategies to cope with altitude are species‐specific. Therefore, there cannot exist one single model to describe how animals react to the change in altitude, even under the same environmental conditions.  相似文献   

12.
Abstract. This paper concerns the hypothesis that shoot (light) competition is the main interaction determining the community change during succession from a relatively species-poor deciduous forest (an overgrown former grassland) to a species-rich grassland, while root (nutrient) competition is of little importance. In a 4-yr restoration experiment, clearcutting, mowing and root trenching were used as treatments. The results did not reject the hypothesis. However, the significance of separating two kinds of shoot competition - ‘coarse-scale (between different growth forms) and ‘fine-scale’ (between similar growth forms) became evident. Release from the ‘coarse-scale’ shoot competition (between different growth forms) increased species richness at the beginning of the experiment. This change was interpreted as the replacement of one species pool (shade-tolerant herbaceous perennials) by another (light-demanding herbaceous perennials), the second pool containing considerably more species. The importance of ‘fine-scale’ shoot competition increased gradually - the levelling of competition by mowing resulted in a more pronounced increase in species richness during successive years. The elimination of ‘coarse-scale’ root competition seemed to be important to some extent only in combination with another treatment - mowing. Initial colonization of the cleared area by individual species was a stochastic process which had little relevance to life-history traits. True grassland species were able to colonize quickly. On the community scale, the developing community still remained relatively poor in species. In all plots which were cleared but not mown, succession already started to reverse towards woody vegetation in the third year.  相似文献   

13.
Species richness is a fundamental measurement of community and regional diversity, and it underlies many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the effects of abundance and sampling effort on richness measures and comparisons. We survey a series of common pitfalls in quantifying and comparing taxon richness. These pitfalls can be largely avoided by using accumulation and rarefaction curves, which may be based on either individuals or samples. These taxon sampling curves contain the basic information for valid richness comparisons, including category–subcategory ratios (species-to-genus and species-to-individual ratios). Rarefaction methods – both sample-based and individual-based – allow for meaningful standardization and comparison of datasets. Standardizing data sets by area or sampling effort may produce very different results compared to standardizing by number of individuals collected, and it is not always clear which measure of diversity is more appropriate. Asymptotic richness estimators provide lower-bound estimates for taxon-rich groups such as tropical arthropods, in which observed richness rarely reaches an asymptote, despite intensive sampling. Recent examples of diversity studies of tropical trees, stream invertebrates, and herbaceous plants emphasize the importance of carefully quantifying species richness using taxon sampling curves.  相似文献   

14.
15.
Aim Scheiner (Journal of Biogeography, 2009, 36 , 2005–2008) criticized several issues regarding the typology and analysis of species richness curves that were brought forward by Dengler (Journal of Biogeography, 2009, 36 , 728–744). In order to test these two sets of views in greater detail, we used a simulation model of ecological communities to demonstrate the effects of different sampling schemes on the shapes of species richness curves and their extrapolation capability. Methods We simulated five random communities with 100 species on a 64 × 64 grid using random fields. Then we sampled species–area relationships (SARs, contiguous plots) as well as species–sampling relationships (SSRs, non‐contiguous plots) from these communities, both for the full extent and the central quarter of the grid. Finally, we fitted different functions (power, quadratic power, logarithmic, Michaelis–Menten, Lomolino) to the obtained data and assessed their goodness‐of‐fit (Akaike weights) and their extrapolation capability (deviation of the predicted value from the true value). Results We found that power functions gave the best fit for SARs, while for SSRs saturation functions performed better. Curves constructed from data of 322 grid cells gave reasonable extrapolations for 642 grid cells for SARs, irrespective of whether samples were gathered from the full extent or the centre only. By contrast, SSRs worked well for extrapolation only in the latter case. Main conclusions SARs and SSRs have fundamentally different curve shapes. Both sampling strategies can be used for extrapolation of species richness to a target area, but only SARs allow for extrapolation to a larger area than that sampled. These results confirm a fundamental difference between SARs and area‐based SSRs and thus support their typological differentiation.  相似文献   

16.
1. Ecologists have recognised several factors that may explain the distribution of species in a metacommunity. These factors may be related to the dispersal of individuals among the patches and environmental conditions. 2. Here, we attempted to determine which of the four different metacommunity frameworks (patch dynamics, mass effect, neutral processes, and species sorting) explain the distribution of Arctiinae moths in Brazilian savanna areas with different tree species richness. 3. The Arctiinae moths were categorised as habitat specialists or generalists, common or rare, and belonging to the tribes Arctiini and Lithosiini. We hypothesized that environmental variables best explain the abundance and occurrence of habitat specialist species, common species, and members of Lithosiini; whereas spatial processes are more closely related to habitat generalists, rare species, and members of Arctiini. 4. Contrary to our expectations, we found that the species sorting (mainly dictated by the species richness of trees) best explained the variation in abundance and occurrence of the majority of species groups. Spatial processes (more related to patch dynamics, mass effect, and neutral), although they were significantly related to some species groups, were not strong enough to explain the distribution of these species in the study area. 5. The plant species richness was the most important environmental condition, related to moth species niches. Therefore, species sorting best explained the distribution of the species of Arctiinae in the Brazilian savanna.  相似文献   

17.
Explaining species richness patterns is a central issue in ecology, but a general explanation remains elusive. Environmental conditions have been proposed to be important drivers of these patterns, but we still need to better understand the relative contribution of environmental factors. Here, we aim at testing two environmental hypotheses for richness gradients: energy availability and environmental seasonality using diversity patterns of the family Leguminosae across Mexico. We compiled a data base of 502 species and 32,962 records. After dividing Mexico into 100 × 100 km grid cells, we constructed a map of variation in species richness that accounts for heterogeneity in sampling effort. We found the cells with the highest species richness of legumes are in the Neotropical region of Pacific coastal and southern Mexico, where the legume family dominates the tropical rain forests and seasonally dry tropical forests. Regression models show that energy and seasonality predictors can explain 25% and 49% of the variation in richness, respectively. Spatial autocorrelation analysis showed that richness has a strong spatial structure, but that most of this structure disappears when both energy and seasonality are used to account for richness gradient. Our study demonstrates multiple environmental conditions contribute complementarily to explain diversity gradients. Moreover, it shows that in some regions, environmental seasonality can be more important than energy availability, contradicting studies at coarser spatial scales. More basic taxonomic and floristic work is needed to help describe patterns of diversity for many groups to allow for testing the underlying mechanisms responsible for diversity gradients. Abstract in Spanish is available with online material.  相似文献   

18.
Ecologists are often required to estimate the number of species in a region or designated area. A number of diversity indices are available for this purpose and are based on sampling the area using quadrats or other means, and estimating the total number of species from these samples. In this paper, a novel theory and method for estimating the number of species is developed. The theory involves the use of the Laplace method for approximating asymptotic integrals. The method is shown to be successful by testing random simulated datasets. In addition, several real survey datasets are tested, including forests that contain a large number (tens to hundreds) of tree species, and an aquatic system with a large number of fish species. The method is shown to give accurate results, and in almost all cases found to be superior to existing tools for estimating diversity.  相似文献   

19.
Understanding population dynamics requires reliable estimates of population density, yet this basic information is often surprisingly difficult to obtain. With rare or difficult‐to‐capture species, genetic surveys from noninvasive collection of hair or scat has proved cost‐efficient for estimating densities. Here, we explored whether noninvasive genetic sampling (NGS) also offers promise for sampling a relatively common species, the snowshoe hare (Lepus americanus Erxleben, 1777), in comparison with traditional live trapping. We optimized a protocol for single‐session NGS sampling of hares. We compared spatial capture–recapture population estimates from live trapping to estimates derived from NGS, and assessed NGS costs. NGS provided population estimates similar to those derived from live trapping, but a higher density of sampling plots was required for NGS. The optimal NGS protocol for our study entailed deploying 160 sampling plots for 4 days and genotyping one pellet per plot. NGS laboratory costs ranged from approximately $670 to $3000 USD per field site. While live trapping does not incur laboratory costs, its field costs can be considerably higher than for NGS, especially when study sites are difficult to access. We conclude that NGS can work for common species, but that it will require field and laboratory pilot testing to develop cost‐effective sampling protocols.  相似文献   

20.
1. The most straightforward way to assess diversity in a site is the species count. However, a relatively large sample is needed for a reliable result because of the presence of many rare species in rich assemblages. The use of richness estimation methods is suggested by many authors as a solution for this problem in many cases.
2. We examined the performance of 13 methods for estimating richness of stream macroinvertebrates inhabiting riffles both at local (stream) and regional (catchment) scales. The evaluation was based on (1) the smallest sub-sample size needed to estimate total richness in the sample, (2) constancy of this size, (3) lack of erratic behaviour in curve shape and (4) similarity in curve shape through different data sets. Samples were from three single stream sites (local) and three from several streams within the same catchment basin (regional). All collections were made from protected forest areas in south-east Brazil.
3. All estimation methods were dependent on sub-sample size, producing higher estimates when using larger sub-sample sizes. The Stout and Vandermeer method estimated total richness in the samples with the smallest sub-sample size, but showed some erratic behaviour at small sub-sample sizes, and the estimated curves were not similar among the six samples. The Bootstrap method was the best estimator in relation to constancy of sub-sample sizes, but needed an unacceptably large sub-sample to estimate total richness in the samples. The second order Jackknife method was the second best estimator both for minimum sub-sample size and constancy of this size and we suggest its use in future studies of diversity in tropical streams. Despite the inferior performance of several other methods, some produced acceptable results. Comments are made on the utility of using these estimators for predicting species richness in an area and for comparative purposes in diversity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号