首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in apoptotic cells consists primarily of Apaf-1 and processed caspase-9.  相似文献   

2.
Activation of procaspase-9, a key component of the apoptosis mechanism, requires the interaction of its caspase recruitment domain (CARD) with the CARD in the adaptor protein Apaf-1. Using nuclear magnetic resonance spectroscopy and mutagenesis we have determined the structure of the CARD from Apaf-1 and the residues important for binding the CARD in procaspase-9. Apaf-1's CARD contains seven short alpha-helices with the core six helices arranged in an antiparallel manner. Residues in helix 2 have a central role in mediating interaction with procaspase-9 CARD. This interaction surface is distinct from that proposed based on the structure of the CARD from RAIDD, but is coincident with that of the structurally similar FADD death effector domain and the Apaf-1 CARD interface identified by crystallographic studies.  相似文献   

3.
The PYRIN domain: a member of the death domain-fold superfamily   总被引:7,自引:0,他引:7       下载免费PDF全文
PYRIN domains were identified recently as putative protein-protein interaction domains at the N-termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The approximately 95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three-dimensional structure. Using secondary structure prediction and potential-based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six-helix bundle death domain-fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain-fold superfamily are well established mediators of protein-protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf-1/Ced-4 family of proteins, was constructed using the three-dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf-1 and caspase-9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain-fold provides experimental support for the structure prediction.  相似文献   

4.
Caspase recruitment domains (CARDs) are members of the death domain superfamily and contain six antiparallel helices in an alpha-helical Greek key topology. We have examined the equilibrium and kinetic folding of the CARD of Apaf-1 (apoptotic protease activating factor 1), which consists of 97 amino acid residues, at pH 6 and pH 8. The results showed that an apparent two state equilibrium mechanism is not adequate to describe the folding of Apaf-1 CARD at either pH, suggesting the presence of intermediates in equilibrium unfolding. Interestingly, the results showed that the secondary structure is less stable than the tertiary structure, based on the transition mid-points for unfolding. Single mixing and sequential mixing stopped-flow studies showed that Apaf-1 CARD folds and unfolds rapidly and suggest a folding mechanism that contains parallel channels with two unfolded conformations folding to the native conformation. Kinetic simulations show that a slow folding phase is described by a third conformation in the unfolded ensemble that interconverts with one or both unfolded species. Overall, the native ensemble is formed rapidly upon refolding. This is in contrast to other CARDs in which folding appears to be dominated by formation of kinetic traps.  相似文献   

5.
Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1   总被引:10,自引:0,他引:10  
Procaspase-9 contains an NH2-terminal caspase-associated recruitment domain (CARD), which is essential for direct association with Apaf-1 and activation. Procaspase-1 also contains an NH2-terminal CARD domain, suggesting that its mechanism of activation, like that of procaspase-9, involves association with an Apaf-1-related molecule. Here we describe the identification of a human Apaf-1-related protein, named Ipaf that contains an NH2-terminal CARD domain, a central nucleotide-binding domain, and a COOH-terminal regulatory leucine-rich repeat domain (LRR). Ipaf associates directly and specifically with the CARD domain of procaspase-1 through CARD-CARD interaction. A constitutively active Ipaf lacking its COOH-terminal LRR domain can induce autocatalytic processing and activation of procaspase-1 and caspase-1-dependent apoptosis in transfected cells. Our results suggest that Ipaf is a specific and direct activator of procaspase-1 and could be involved in activation of caspase-1 in response to pro-inflammatory and apoptotic stimuli.  相似文献   

6.
The CED4/Apaf-1 family of proteins functions as critical regulators of apoptosis and NF-kappaB signaling pathways. A novel human member of this family, called CARD12, was identified that induces apoptosis when expressed in cells. CARD12 is most similar in structure to the CED4/Apaf-1 family member CARD4, and is comprised of an N-terminal caspase recruitment domain (CARD), a central nucleotide-binding site (NBS), and a C-terminal domain of leucine-rich repeats (LRR). The CARD domain of CARD12 interacts selectively with the CARD domain of ASC, a recently identified proapoptotic protein. In addition, CARD12 coprecipitates caspase-1, a caspase that participates in both apoptotic signaling and cytokine processing. CARD12 may assemble with proapoptotic CARD proteins to coordinate the activation of downstream apoptotic and inflammatory signaling pathways.  相似文献   

7.
Signaling in apoptosis and inflammation is often mediated by proteins of the death domain superfamily in the Fas/FADD/Caspase-8 or the Apaf-1/Caspase-9 pathways. This superfamily currently comprises the death domain (DD), death effector domain (DED), caspase recruitment domain (CARD), and pyrin domain (PYD) subfamilies. The PYD subfamily is most abundant, but three-dimensional structures are only available for the subfamilies DD, DED, and CARD, which have an antiparallel arrangement of six alpha helices as common fold. This paper presents the NMR structure of PYD of NALP1, a protein that is involved in the innate immune response and is a component of the inflammasome. The structure of NALP1 PYD differs from all other known death domain superfamily structures in that the third alpha helix is replaced by a flexibly disordered loop. This unique feature appears to relate to the molecular basis of familial Mediterranean fever (FMF), a genetic disease caused by single-point mutations.  相似文献   

8.
Apoptotic protease-activating factor-1 (Apaf-1), a key regulator of the mitochondrial apoptosis pathway, consists of three functional regions: (i) an N-terminal caspase recruitment domain (CARD) that can bind to procaspase-9, (ii) a CED-4-like region enabling self-oligomerization, and (iii) a regulatory C terminus with WD-40 repeats masking the CARD and CED-4 region. During apoptosis, cytochrome c and dATP can relieve the inhibitory action of the WD-40 repeats and thus enable the oligomerization of Apaf-1 and the subsequent recruitment and activation of procaspase-9. Here, we report that different apoptotic stimuli induced the caspase-mediated cleavage of Apaf-1 into an 84-kDa fragment. The same Apaf-1 fragment was obtained in vitro by incubation of cell lysates with either cytochrome c/dATP or caspase-3 but not with caspase-6 or caspase-8. Apaf-1 was cleaved at the N terminus, leading to the removal of its CARD H1 helix. An additional cleavage site was located within the WD-40 repeats and enabled the oligomerization of p84 into a approximately 440-kDa Apaf-1 multimer even in the absence of cytochrome c. Due to the partial loss of its CARD, the p84 multimer was devoid of caspase-9 or other caspase activity. Thus, our data indicate that Apaf-1 cleavage causes the release of caspases from the apoptosome in the course of apoptosis.  相似文献   

9.
Negative regulation of the Apaf-1 apoptosome by Hsp70   总被引:1,自引:0,他引:1  
Release of cytochrome c from mitochondria by apoptotic signals induces ATP/dATP-dependent formation of the oligomeric Apaf-1-caspase-9 apoptosome. Here we show that the documented anti-apoptotic effect of the principal heat-shock protein, Hsp70, is mediated through its direct association with the caspase-recruitment domain (CARD) of Apaf-1 and through inhibition of apoptosome formation. The interaction between Hsp70 and Apaf-1 prevents oligomerization of Apaf-1 and association of Apaf-1 with procaspase-9. On the basis of these results, we propose that resistance to apoptosis exhibited by stressed cells and some tumours, which constitutively express high levels of Hsp70, may be due in part to modulation of Apaf-1 function by Hsp70.  相似文献   

10.
We describe the isolation and characterization of a new apaf-1-interacting protein (APIP) as a negative regulator of ischemic injury. APIP is highly expressed in skeletal muscle and heart and binds to the CARD of Apaf-1 in competition with caspase-9. Exogenous APIP inhibits cytochrome c-induced activation of caspase-3 and caspase-9, and suppresses cell death triggered by mitochondrial apoptotic stimuli through inhibiting the downstream activity of cytochrome c released from mitochondria. Conversely, reduction of APIP expression potentiates mitochondrial apoptosis. APIP expression is highly induced in mouse muscle affected by ischemia produced by interruption of the artery in the hindlimb and in C2C12 myotubes created by hypoxia in vitro, and the blockade of APIP up-regulation results in TUNEL-positive ischemic damage. Furthermore, forced expression of APIP suppresses ischemia/hypoxia-induced death of skeletal muscle cells. Taken together, these results suggest that APIP functions to inhibit muscle ischemic damage by binding to Apaf-1 in the Apaf-1/caspase-9 apoptosis pathway.  相似文献   

11.
The nematode CED-4 protein and its human homolog Apaf-1 play a central role in apoptosis by functioning as direct activators of death-inducing caspases. A novel human CED-4/Apaf-1 family member called CARD4 was identified that has a domain structure strikingly similar to the cytoplasmic, receptor-like proteins that mediate disease resistance in plants. CARD4 interacted with the serine-threonine kinase RICK and potently induced NF-kappaB activity through TRAF-6 and NIK signaling molecules. In addition, coexpression of CARD4 augmented caspase-9-induced apoptosis. Thus, CARD4 coordinates downstream NF-kappaB and apoptotic signaling pathways and may be a component of the host innate immune response.  相似文献   

12.
We report the discovery of a protein domain, hereafter referred to as DAPIN, in diverse vertebrate and viral proteins that is associated with tumor biology, apoptosis and inflammation. Based on a secondary structure prediction, we suggest an all-alpha fold for DAPIN, which is also adopted by apoptotic protein domains of the CARD, death domain and death effector domain type.  相似文献   

13.
Bcr-Abl, activated in chronic myelogenous leukemias, is a potent cell death inhibitor. Previous reports have shown that Bcr-Abl prevents apoptosis through inhibition of mitochondrial cytochrome c release. We report here that Bcr-Abl also inhibits caspase activation after the release of cytochrome c. Bcr-Abl inhibited caspase activation by cytochrome c added to cell-free lysates and prevented apoptosis when cytochrome c was microinjected into intact cells. Bcr-Abl acted posttranslationally to prevent the cytochrome c-induced binding of Apaf-1 to procaspase 9. Although Bcr-Abl prevented interaction of endogenous Apaf-1 with the recombinant prodomain of caspase 9, it did not affect the association of endogenous caspase 9 with the isolated Apaf-1 caspase recruitment domain (CARD) or Apaf-1 lacking WD-40 repeats. These data suggest that Apaf-1 recruitment of caspase 9 is faulty in the presence of Bcr-Abl and that cytochrome c/dATP-induced exposure of the Apaf-1 CARD is likely defective. These data provide a novel locus of Bcr-Abl antiapoptotic action and suggest a distinct mechanism of apoptosomal inhibition.  相似文献   

14.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

15.
Apoptosis is an important mechanism of physiological and pathological cell death and is known to occur in various neurological disorders. Apoptosis is associated with activation of genetic programs in which apoptosis-effector genes promote cell death, thereby opposing repressor genes that enhance cell survival. In this review, we describe various apoptotic pathways, with a special reference to the caspase cascade and discuss the role of individual antiapoptotic factors in various target diseases. Apoptosis could be suppressed by in vivo gene delivery of antiapoptotic factors directly into the central nervous system. The adeno-associated virus (AAV) vector is a good candidate for such gene therapy because it can infect postmitotic neurons. We also describe our in vivo system for overexpression of apoptotic protease activating factor-1 (Apaf-1) caspase recruitment domain as an Apaf1-dominant negative inhibitor (Apaf-1-DN) to regulate the mitochondrial caspase cascade. Apaf-1-DN delivery using an AAV vector system inhibited mitochondrial apoptotic signaling pathway and prevented dopaminergic cell death in a mouse model of Parkinson's disease. Our results suggest that AAV-Apaf-1-DN is potentially useful as an antimitochondrial apoptotic gene therapy for neurodegenerative disorders such as Parkinson's disease.  相似文献   

16.
Adult Apaf-1-deficient mice exhibit male infertility   总被引:11,自引:0,他引:11  
Release of cytochrome c from the mitochondria, and subsequent binding to apoptotic protease-activating factor-1 (Apaf-1), is a key trigger of apoptotic events. A complex composed of Apaf-1, dATP, and cytochrome c activates a series of cytoplasmic proteases called caspases, leading to apoptotic cell death. We have disrupted the Apaf-1 gene in the mouse. Like previous reports on this knockout model, we find that most Apaf-1 mutants die perinatally and frequently exhibit exencephaly and cranioschesis. We additionally find that the neural lesions that develop in the knockout are due to an excess of neural progenitor cells that manifests as early as embryonic day 9.5 in development. In contrast to previous reports on the Apaf-1 knockout mice, we find that 5% of the mutants successfully survive to adulthood. In these survivors, the brain develops normally, but in males, there is degeneration of spermatogonia resulting in the virtual absence of sperm. Thus, cytochrome c-mediated apoptosis is not absolutely required for normal neural development, but is essential for spermatogenesis. These findings strongly suggest that alternative apoptotic pathways work in conjunction with and parallel to Apaf-1 and can modify its effect on programmed cell death.  相似文献   

17.
Apaf-1XL is an inactive isoform compared with Apaf-1L   总被引:3,自引:0,他引:3  
Apaf-1 plays a crucial role in the cytochrome c/dATP-dependent activation of caspase-9 and -3. We found that the human myeloid leukemic K562 cells were more resistant to cytochrome c-induced activation of caspase-9 and -3 in a cell-free system compared with the human T-lymphoblastic subclone CEM/VLB(100) cells. Apaf-1 cDNA sequencing revealed an additional insert of 11 aa between the CARD and CED-4 (ATPase) domains in K562 cells, which was identical to the sequence of Apaf-1XL. Immunoprecipitation of Apaf-1 with caspase-9 after a cell-free reaction demonstrated that Apaf-1XL in the K562 cell line showed a lower binding ability to caspase-9 compared with Apaf-1L protein. The resistance of K562 cells to cytochrome c-dependent apoptosis may be partly due to this Apaf-1XL form. These results suggest that the additional insert between CARD and CED-4 domains might affect Apaf-1 recruitment of caspase-9 during apoptosis.  相似文献   

18.
The apoptotic protease-activating factor 1 (Apaf-1) relays the death signal in the mitochondrial pathway of apoptosis. Apaf-1 oligomerizes on binding of mitochondrially released cytochrome c into the heptameric apoptosome complex to ignite the downstream cascade of caspases. Here, we present the 3.0?? crystal structure of full-length murine Apaf-1 in the absence of cytochrome c. The structure shows how the mammalian death switch is kept in its "off" position. By comparing the off state with a recent cryo-electron microscopy derived model of Apaf-1 in its apoptosomal conformation, we depict the molecular events that transform Apaf-1 from autoinhibited monomer to a building block of the caspase-activating apoptosome. Moreover, we have solved the crystal structure of the R265S mutant of full-length murine Apaf-1 in the absence of cytochrome c to 3.55?? resolution and we show that proper function of Apaf-1 relies on R265 in the vicinity of the bound nucleotide.  相似文献   

19.
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.  相似文献   

20.
Apoptosis plays a role in cardiomyocyte death in several cardiovascular disorders. Here, we show that primary postnatal cardiomyocytes did not die upon activation of the intrinsic (cytochrome c-dependent) apoptotic pathway. Release of cytochrome c from mitochondria to the cytosol occurred, but did not activate the effector phase of apoptosis. Myocardial cells did not express apoptotic protease-activating factor-1 (Apaf-1), the allosteric activator of caspase-9 acting downstream of cytochrome c release. Forced expression of Apaf-1 restored the competence to complete the cytochrome c-induced apoptotic program and this effect was prevented by overexpression of Bcl-X(L). However, cardiomyocytes were able to enter the apoptotic program when it was initiated by activation of death receptors, as observed during serum deprivation and metabolic inhibition. Our results indicate that regulation of Apaf-1 expression may be a new regulatory mechanism developed in postmitotic cells in order to prevent irreversible commitment to die after release of cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号