首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M D Fothergill  A R Fersht 《Biochemistry》1991,30(21):5157-5164
The crystal structures of two mutant tyrosyl-tRNA synthetases (TyrTS) are reported to test predictions from kinetic data about structural perturbations and also to aid in the interpretation of apparent strengths of hydrogen bonds measured by protein engineering. The enzyme-tyrosine and enzyme-tyrosyl adenylate complexes of the mutant, TyrTS(Cys----Gly-35), have been determined at 2.5- and 2.7-A resolution, respectively. Residue Cys-35 is in the ribose binding site. Small rearrangements in structure are seen in the enzyme-tyrosine complex that are localized around the cavity created by the mutation. The side chain of Thr-51 moves to occupy the cavity, and Ile-52 adopts two significantly populated conformations, one as in the native enzyme and a second unique to the mutant. On binding tyrosyl adenylate, Ile-52 in the mutant crystal structure preferentially occupies the conformation observed in the native structure. The side chain at Thr-51 becomes disordered. The double-mutant test, which was designed to detect interactions between residues, had previously shown a discrepancy of some 0.4 kcal/mol on mutating Cys-35 and Thr-51 separately and together. A crystal structure of a second mutant, delta TyrTS(Tyr----Phe-34), complexed with tyrosine has been determined at 2.7-A resolution. Tyr-34 in wild-type enzyme makes a hydrogen bond with the phenolic oxygen of the bound tyrosine substrate. The mutant crystal structure was solved to discover whether or not a water molecule binds to the substrate instead of the hydroxyl of Tyr-34 as the interpretation of apparent binding energies from site-directed mutagenesis experiments hinges crucially on whether there is access of water to the mutated region.  相似文献   

2.
Enzyme-substrate contacts in the hydrolysis of ester substrates by the cysteine protease papain were investigated by systematically altering backbone hydrogen-bonding and side-chain hydrophobic contacts in the substrate and determining each substrate's kinetic constants. The observed specificity energies [defined as delta delta G obs = -RT ln [(kcat/KM)first/(kcat/KM)second)]] of the substrate backbone hydrogen bonds were -2.7 kcal/mol for the P2 NH and -2.6 kcal/mol for the P1 NH when compared against substrates containing esters at those sites. The observed binding energies were -4.0 kcal/mol for the P2 Phe side chain, -1.0 kcal/mol for the P1' C=O, and -2.3 kcal/mol for the P2' NH. The latter three values probably all significantly underestimate the incremental binding energies. The P2 NH, P2 Phe side-chain, and P1 NH contacts display a strong interdependence, or cooperativity, of interaction energies that is characteristic of enzyme-substrate interactions. This interdependence arises largely from the entropic cost of forming the enzyme-substrate transition state. As favorable contacts are added successively to a substrate, the entropic penalty associated with each decreases and the free energy expressed approaches the incremental interaction energy. This is the first report of a graded cooperative effect. Elucidation of favorable enzyme-substrate contacts remote from the catalytic site will assist in the design of highly specific cysteine protease inhibitors.  相似文献   

3.
The interaction of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus with its substrates in the aminoacyl adenylation reaction has been studied by stopped-flow fluorescence. The observed changes have been assigned to their chemical and physical processes by comparison with equilibrium dialysis, pyrophosphate exchange kinetics and rapid quenching and sampling techniques to give the rate constants for ligand binding, the formation of tyrosyl adenylate, and the reverse reaction. The stoichiometry of tyrosine and ATP binding in the catalytic process has been determined directly by equilibrium dialysis and equilibrium gel filtration under pyrophosphate exchange conditions, i.e., where a steady state has been set up in which the equilibrium position favors starting materials. It is shown that the rate-determining step in the formation of tyrosyl adenylate involves 1 mole each of tyrosine and ATP. A second mole of tyrosine and ATP bind to the aminoacyl adenylate complex stabilizing the high-energy intermediate. The enzyme tyrosyl adenylate complex that is isolated by gel filtration is in a different conformational state from that in the presence of tyrosine and ATP.  相似文献   

4.
C K Ho  A R Fersht 《Biochemistry》1986,25(8):1891-1897
Natural variation and evolution impose structural changes on an enzyme that can affect the energetics of catalysis. The energy profile of reaction could, in theory, be altered in three distinct ways: uniform binding changes, differential binding changes, and catalysis of elementary steps. Residue threonine-51 of tyrosyl-tRNA synthetase from Bacillus stearothermophilus is subject to natural variation, being replaced by alanine and proline in the enzymes from Bacillus caldotenax and Escherichia coli, respectively. The consequences of this variation on the energetics of formation of tyrosyl adenylate have been investigated by constructing free energy profiles for wild-type and mutant enzymes constructed by introducing these amino acids into the B. stearothermophilus enzyme. Mutation of Thr-51 to alanine, proline, and cysteine by site-directed mutagenesis improves the stabilization of the transition state in the formation of tyrosyl adenylate. Most marked is the mutation Thr-51----Pro-51 which stabilizes the transition state by 2.2 kcal/mol and accelerates the forward rate 20-fold to a level near that of the enzyme from E. coli. However, the improved transition-state binding is accompanied by an even greater stabilization of tyrosyl adenylate. This reduces the rate of pyrophosphorolysis of tyrosyl adenylate and/or weakens the binding of pyrophosphate in the reverse reaction, shifting the equilibrium between enzyme-bound reactants greatly in favor of the enzyme-intermediate complex. The more stable mutant enzyme-tyrosyl adenylate complexes have lower rates of aminoacylation, suggesting that mutations which stabilize the intermediate slow down the subsequent transfer of tyrosine from tyrosyl adenylate to tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have analyzed various mutations involving residues Thr-40 and His-45 in the tyrosyl-tRNA synthetase of Bacillus stearothermophilus. The utilization of binding energy in catalysis of tyrosyl adenylate formation from tyrosine and ATP was determined from the free energy profiles for the mutant enzymes. Our results confirm that the side chains of Thr-40 and His-45 provide a binding site for the pyrophosphoryl portion of the transition state of this reaction and for pyrophosphate in the reverse reaction. Deletion of these side chains destabilizes the transition-state by 4.9 and 4.1 kcal mol-1, respectively, consistent with a charged hydrogen-bonding interaction. To examine the role of His-45 further, we constructed the potentially conservative mutations His----Gln-45 and His----Asn-45. Both mutant enzymes are debilitated compared with the native enzyme. The His----Gln-45 enzyme is more active than enzyme in which the complete side chain is deleted (His----Ala-45), and so in this location glutamine is a semiconservative replacement. In contrast, the His----Asn-45 mutation is significantly worse than simple deletion of the side chain, indicating that asparagine at this position causes active destabilization of the transition state compared to His----Ala-45. The amide-NH2 of glutamine may be considered stereochemically equivalent to the epsilon-NH of histidine whereas the amide-NH2 of asparagine is comparable to the delta-NH of histidine. The results suggest that the epsilon-NH rather than the delta-NH group of His-45 is involved in the transition-state stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Site-directed mutagenesis of the tyrosyl-tRNA synthetase followed by kinetic studies has shown that residues which are distant from the active site of the free enzyme are brought into play as the structure of the enzyme changes during catalysis. Positively charged side chains which are in mobile loops of the enzyme envelope the negatively charged pyrophosphate moiety during the transition state for the formation of tyrosyl adenylate in an induced-fit mechanism. Residues Lys-82 and Arg-86, which are on one side of the rim of the binding site pocket, and Lys-230 and Lys-233, which are on the other side, have been mutated to alanine residues and also to asparagine or glutamine. The resultant mutants still form 1 mol of tyrosyl adenylate/mol of dimer but with rate constants up to 8000 times lower. Construction of difference energy diagrams reveals that all the residues specifically interact with the transition state for the reaction and with pyrophosphate in the E.Tyr-AMP.PPi complex. Yet, the epsilon-NH3+ groups of Lys-230 and Lys-233 in the crystalline enzyme are at least 8 A too far away to interact with the pyrophosphate moiety in the transition state at the same time as do Lys-82 and Arg-86. Binding of substrates must, therefore, induce a conformational change in the enzyme that brings these residues into range. Consistent with this proposal is the observation that all four residues are in flexible regions of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
T N Wells  C K Ho  A R Fersht 《Biochemistry》1986,25(21):6603-6608
The equilibrium constant for the formation of tyrosyl adenylate and pyrophosphate from ATP and tyrosine in solution has been measured by applying the Haldane relationship to wild-type and three mutant tyrosyl-tRNA synthetases from Bacillus stearothermophilus. The formation constant (=[Tyr-AMP] [PPi]/[ATP] [Tyr]) at pH 7.78, 25 degrees C, and 10 mM MgCl2 is (3.5 +/- 0.5) X 10(-7). This corresponds to a free energy of hydrolysis of tyrosyl adenylate at pH 7.0 and 25 degrees C of -16.7 kcal mol-1. All necessary rate constants had been determined previously for the calculations apart from the dissociation constant of tyrosyl adenylate from its enzyme-bound complex. This was measured by taking advantage of the 100-fold difference in hydrolysis rates of the tyrosyl adenylate when sequestered by the enzyme and when free in solution. These are technically difficult measurements because the dissociation constants are so low and the complexes unstable. The task was simplified by using mutants prepared by site-directed mutagenesis. These were designed to have different rate and equilibrium constants for dissociation of tyrosyl adenylate from the enzyme-bound complexes. The dissociation constants were in the range (3.5-38) X 10(-12) M, with that for wild type at 13 X 10(-12) M. The four enzymes all gave consistent data for the formation constant of tyrosyl adenylate in solution. This not only improves the reliability of the measurement but also provides confirmation of the reliability of the measured kinetic constants for the series of enzymes.  相似文献   

8.
D M Lowe  G Winter  A R Fersht 《Biochemistry》1987,26(19):6038-6043
Residues Asp-78 and Gln-173 of the tyrosyl-tRNA synthetase of Bacillus stearothermophilus form part of the binding site for tyrosine by making hydrogen bonds with the alpha-ammonium group. Asp-38 is close enough to the group to make an important electrostatic contribution. Unlike other residues in the active site that have been studied by site-directed mutagenesis, Asp-38, Asp-78, and Gln-173 are part of hydrogen-bonded networks. Each of these residues has been mutated to an alanine, and the resultant mutants have been studied by kinetics to construct the difference energy diagrams for the formation of tyrosyl adenylate. In each example, the binding of tyrosine is weakened by about 2.5 kcal mol-1. But, unlike previous mutants, the dissociation of the second substrate, in this case ATP, is also seriously affected, being weakened by some 2 kcal mol-1 for TyrTS(Ala-78) and TyrTS(Ala-173). The energy of the transition state for the formation of tyrosyl adenylate is raised by 7.8 kcal mol-1 for the former and 4.5 kcal mol-1 for the latter mutant. Addition of these mutants to linear free energy plots constructed for the nondisruptive mutants in the accompanying study [Fersht, A. R., Leatherbarrow, R. J., & Wells, T. N. C. (1987) Biochemistry (preceding paper in this issue)] reveals large deviations of the data for TyrTS(Ala-38) and TyrTS(Ala-78) from the regression line. These thus belong to a different class of mutations from previous nondisruptive examples. This observation combined with the structural evidence and difference energy diagrams strongly suggests that the mutations Asp----Ala-38 and Asp----Ala-78 are disruptive in nature.  相似文献   

9.
The activity of mutant enzymes can be analyzed quantitatively by structure-activity relationships in a manner analogous to Br?nsted or Hammett plots for simple organic reactions. The slopes of such plots, the beta values, indicate for the enzymatic reactions the fraction of the overall binding energy used in stabilizing particular complexes. In particular, information can be derived about the interactions between the enzyme and the transition state. The activities of many mutant tyrosyl-tRNA synthetases fit well simple linear free energy relationships. The formation of enzyme-bound tyrosyl adenylate (E.Tyr-AMP) from enzyme-bound tyrosine and ATP (E.Tyr-ATP) results in an increase in binding energy between the enzyme and the side chain of tyrosine and the ribose ring of ATP. Linear free energy plots of enzymes mutated in these positions give the fraction of the binding energy change that occurs on formation of the transition state for the chemical reaction and the various complexes. It is shown that groups that specifically stabilize the transition state of the reaction are characterized by beta values much greater than 1. This is found for residues that bind the gamma-phosphate of ATP (Thr-40 and His-45) and have previously been postulated to be involved in transition-state stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
T Nowak  M J Lee 《Biochemistry》1977,16(7):1343-1350
The formation of multiple ligand complexes with muscle pyruvate kinase was measured in terms of dissociation constants and the standard free energies of formation were calculated. The binding of Mn2+ to the enzyme (KA = 55 +/- 5 X 10(-6) M; deltaF degrees = -5.75 +/- 0.05 kcal/mol) and to the enzyme saturated with phosphoenolpyruvate (conditional free energy) KA' = 0.8 +/- 0.4 X 10(-6) M; deltaF degrees = -8.22 +/- 0.34 kcal/mol) has been measured under identical conditions giving a free energy of coupling, delta(deltaF degrees) = -2.47 +/- 0.34 kcal/mol. Such a large negative free energy of coupling is diagnostic of a strong positively cooperative effect in ligand binding. The binding of the substrate phosphoenolpyruvate to free enzyme and the enzyme-Mn2+ complex was, by necessity, measured by different methods. The free energy of phosphoenolpyruvate binding to free enzyme (KS = 1.58 +/- 0.10 X 10(-4)M; deltaF degrees = -5.13 +/- 0.04 kcal/mol) and to the enzyme-Mn2+ complex (K3 = 0.75 +/- 0.10 X 10(-6)M; deltaF degrees = -8.26 +/- 0.07 kcal/mol) also gives a large negative free energy of coupling, delta(deltaF degrees) = -3.16 +/- 0.08 kcal/mol. Such a large negative value confirms reciprocal binding effects between the divalent cation and the substrate phosphoenolpyruvate. The binding of Mn2+ to the enzyme-ADP complex was also investigated and a free energy of coupling, delta(deltaF degrees) = -0.08 +/- 0.08 kcal/mol, was measured, indicative of little or no cooperativity in binding. The free energy of coupling with Mn2+ and pyruvate was measured as -1.52 +/- 0.14 kcal/mol, showing a significant amount of cooperativity in ligand binding but a substantially smaller effect than that observed for phosphoenolpyruvate binding. The magnitude of the coupling free energy may be related to the role of the divalent cation in the formation of the enzyme-substrate complexes. In the absence of the activating monovalent cation, the coupling free energies for phosphoenolpyruvate and pyruvate binding decrease by 40-60% and 25%, respectively, substantiating a role for the monovalent cation in the formation of enzyme-substrate complexes with phosphoenolpyruvate and with pyruvate.  相似文献   

11.
Crystalline complexes of tyrosyl tRNA synthetase were prepared with the following substrates and substrate analogues: ATP, AMP, α-β methylene ATP, tyrosine and tyrosinyl adenylate. Using 14C-labelled ligands, the binding constants for tyrosine and ATP to crystals were shown to be similar to those observed in solution. Two tyrosine molecules were found to bind to the symmetrical dimer in the crystalline enzyme, while only one tyrosine binds with high affinity in solution. Electron density difference maps show that tyrosine and the AMP derivatives all bind at the same site, in a cleft 10 Å deep at one side of the pleated sheet, tyrosine binding over 100 times more strongly. The phosphate groups of AMP and ATP are not unambiguously observed in the difference electron density maps. Tyrosinyl adenylate is clearly delineated in the electron density difference map, with the tyrosyl side-chain occupying the site previously observed. The adenosine group is in a wide cup-like depression outside the pocket, lying between the carboxyl-terminal continuations of strands 3 and 5 of the pleated sheet. The adenine ring is lying against an α-helix. The binding of tyrosinyl adenylate causes no detectable conformational changes of the enzyme.  相似文献   

12.
The first step of the reaction catalyzed by the aminoacyl-tRNA synthetases is the formation of enzyme-bound aminoacyl adenylate. The steady-state kinetics of this step has conventionally been studied by measuring the rate of isotopic exchange between pyrophosphate and ATP. A simple kinetic analysis of the pyrophosphate-exchange reaction catalyzed by the tyrosyl-tRNA synthetase from Bacillus stearothermophilus is given in which all the observed rate and binding constants can be assigned to identifiable physical processes under a variety of limiting conditions. The free energies of binding to the enzyme of tyrosine, ATP, and the transition state for tyrosyl adenylate formation can be measured in relatively straightforward experiments. The excellent agreement between parameters measured in these experiments and those from earlier pre-steady-state kinetics confirms that the intermediates isolated in the presteady state are kinetically competent. The dissociation constant of ATP from the unligated enzyme, a constant that has previously been experimentally inaccessible, has been measured for wild-type and several mutant enzymes. The changes in enthalpy and entropy of activation on mutation have been measured by a rapid procedure for mutants that have altered contacts with tyrosine and ATP. Those mutants that have large changes of enthalpy and entropy of binding are likely to have structural changes and so warrant further examination by protein crystallography.  相似文献   

13.
T N Wells  A R Fersht 《Biochemistry》1989,28(23):9201-9209
Linear free energy relationships (LFERs) are powerful tools in the search to understand the relationship between molecular structure and activity. They frequently link the changes in the rate constants for a reaction to changes in the equilibrium constant caused by alterations in structure. In physical-organic chemistry, these have been interpreted to give information on the structure of the transition state. Similar phenomena have been observed for reactions catalyzed by a series of engineered mutants of tyrosyl-tRNA synthetase from Bacillus stearothermophilus. LFERs are applied in this study to probe how the enzyme minimizes its side reactions. A linear free energy relationship is shown between the binding of the unstable enzyme-tyrosyl adenylate complex and its rate constant of hydrolysis. However, mutations of a key residue, His48, show significant deviation from the relationship, implying a role for the side chain in protection of the complex from hydroxide attack. A second linear free energy relationship is shown linking the rate and equilibrium constants for tyrosyl adenylate binding to the enzyme. Four distinct classes of mutation are discussed in the context of this relationship. The data from all but one of these groups of mutations conform well to a linear free energy relationship between the dissociation rate and dissociation equilibrium constants for the enzyme-tyrosyl adenylate complex with slope beta = 1.01 +/- 0.08. The specificity of binding of tyrosyl adenylate is determined solely by its dissociation rate constant of the intermediate, and the mutations have relatively little effect on the enzyme-tyrosyl adenylate association rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
K Kolmodin  P Nordlund  J Aqvist 《Proteins》1999,36(3):370-379
Substrate dephosphorylation by the low molecular weight protein tyrosine phosphatases proceeds via nucleophilic substitution at the phosphorous atom yielding a cysteinyl phosphate intermediate. However, several questions regarding the exact reaction mechanism remain unanswered. Starting from the crystal structure of the enzyme we study the energetics of this reaction, using the empirical valence bond method in combination with molecular dynamics and free energy perturbation simulations. The free energy profiles of two mechanisms corresponding to different protonation states of the reacting groups are examined along stepwise and concerted pathways. The activation barriers calculated relative to the enzyme-substrate complex are very similar for both monoanionic and dianionic substrates, but taking the substrate binding step into account shows that hydrolysis of monoanionic substrates is strongly favored by the enzyme, because a dianionic substrate will not bind when the reacting cysteine is ionized. The calculated activation barrier for dephosphorylation of monoanionic phenyl phosphate according to this novel mechanism is 14 kcal mol(-1), which is in good agreement with experimental data. Proteins 1999;36:370-379.  相似文献   

15.
The highly conserved arginine-244 of beta-lactamases has been postulated to play a role in their initial recognition of substrates, presumably through ion pairing interactions [Moews, P. C., Knox, J. R., Dideberg, O., Charlier, P., & Frère, J. M. (1990) Proteins: Struct., Funct., Genet. 7, 156-171]. However, in the Michaelis enzyme-substrate complex, no direct function has been attributed to this residue. Two mutants with substitutions of this residue in the TEM-1 beta-lactamase (lysine-244 and serine-244) have been prepared to explore whether the guanidinium group of arginine-244 plays a critical role in the turnover processes. The mutant enzymes are effective catalysts for the hydrolysis of both penicillins and cephalosporins, and the lysine mutant enzyme behaves virtually identically to the wild-type beta-lactamase. Comparative kinetic characterization of the serine mutant and wild-type enzymes attributed apparent binding energies of 1.3-2.3 kcal/mol for the penicillins and 0.3-1.0 kcal/mol for the cephalosporins to the transition-state species by arginine-244. Furthermore, it was shown that arginine-244 also contributes equally well to ground-state binding stabilization. These results were interpreted to indicate the involvement of a long hydrogen bond between arginine-244 and the substrate carboxylate, both in the ground and transition states. A reassessed picture for substrate anchoring involving interactions of the substrate carboxylate with the side chains of Ser-130, Ser-235, and Arg-244 is proposed to accommodate these observations.  相似文献   

16.
Eglin c, turkey ovomucoid third domain, and bovine pancreatic trypsin inhibitor (Kunitz) are all standard mechanism, canonical protein inhibitors of serine proteinases. Each of the three belongs to a different inhibitor family. Therefore, all three have the same canonical conformation in their combining loops but differ in their scaffoldings. Eglin c (Leu45 at P1) binds to chymotrypsin much better than its Ala45 variant (the difference in standard free energy changes on binding is -5.00 kcal/mol). Similarly, turkey ovomucoid third domain (Leu18 at P1) binds to chymotrypsin much better than its Ala18 variant (the difference in standard free energy changes on binding is -4.70 kcal/mol). As these two differences are within the +/-400 cal/mol bandwidth (expected from the experimental error), one can conclude that the system is additive. On the basis that isoenergetic is isostructural, we expect that within both the P1 Ala pair and the P1 Leu pair, the conformation of the inhibitor's P1 side chain and of the enzyme's specificity pocket will be identical. This is confirmed, within the experimental error, by the available X-ray structures of complexes of bovine chymotrypsin Aalpha with eglin c () and with turkey ovomucoid third domain (). A comparison can also be made between the structures of P1 (Lys+)15 of bovine pancreatic trypsin inhibitor (Kunitz) ( and ) and of the P1 (Lys+)18 variant of turkey ovomucoid third domain (), both interacting with chymotrypsin. In this case, the conformation of the side chains is strikingly different. Bovine pancreatic trypsin inhibitor with (Lys+)15 at P1 binds to chymotrypsin more strongly than its Ala15 variant (the difference in standard free energy changes on binding is -1.90 kcal/mol). In contrast, turkey ovomucoid third domain variant with (Lys+)18 at P1 binds to chymotrypsin less strongly than its Ala18 variant (the difference in standard free energies of association is 0.95 kcal/mol). In this case, P1 Lys+ is neither isostructural nor isoenergetic. Thus, a thermodynamic criterion for whether the conformation of a P1 side chain in the complex matches that of an already determined one is at hand. Such a criterion may be useful in reducing the number of required X-ray crystallographic structure determinations. More importantly, the criterion can be applied to situations where direct determination of the structure is extremely difficult. Here, we apply it to determine the conformation of the Lys+ side chain in the transition state complex of a substrate with chymotrypsin. On the basis of kcat/KM measurements, the difference in free energies of activation for Suc-AAPX-pna when X is Lys+ and X is Ala is 1.29 kcal/mol. This is in good agreement with the corresponding difference for turkey ovomucoid third domain variants but in sharp contrast to the bovine pancreatic trypsin inhibitor (Kunitz) data. Therefore, we expect that in the transition state complex of this substrate with chymotrypsin, the P1 Lys+ side chain is deeply inserted into the enzyme's specificity pocket as it is in the (Lys+)18 turkey ovomucoid third domain complex with chymotrypsin.  相似文献   

17.
Kasper P  Christen P  Gehring H 《Proteins》2000,40(2):185-192
We describe a methodology to calculate the relative free energies of protein-peptide complex formation. The interaction energy was decomposed into nonpolar, electrostatic and entropic contributions. A free energy-surface area relationship served to calculate the nonpolar free energy term. The electrostatic free energy was calculated with the finite difference Poisson-Boltzmann method and the entropic contribution was estimated from the loss in the conformational entropy of the peptide side chains. We applied this methodology to a series of DnaK*peptide complexes. On the basis of the single known crystal structure of the peptide-binding domain of DnaK with a bound heptapeptide, we modeled ten other DnaK*heptapeptide complexes with experimentally measured K(d) values from 0.06 microM to 11 microM, using molecular dynamics to refine the structures of the complexes. Molecular dynamic trajectories, after equilibration, were used for calculating the energies with greater accuracy. The calculated relative binding free energies were compared with the experimentally determined free energies. Linear scaling of the calculated terms was applied to fit them to the experimental values. The calculated binding free energies were between -7.1 kcal/mol and - 9.4 kcal/mol with a correlation coefficient of 0.86. The calculated nonpolar contributions are mainly due to the central hydrophobic binding pocket of DnaK for three amino acid residues. Negative electrostatic fields generated by the protein increase the binding affinity for basic residues flanking the hydrophobic core of the peptide ligand. Analysis of the individual energy contributions indicated that the nonpolar contributions are predominant compared to the other energy terms even for peptides with low affinity and that inclusion of the change in conformational entropy of the peptide side chains does not improve the discriminative power of the calculation. The method seems to be useful for predicting relative binding energies of peptide ligands of DnaK and might be applicable to other protein-peptide systems, particularly if only the structure of one protein-ligand complex is available.  相似文献   

18.
To understand the processes involved in the catalytic mechanism of pyridoxal kinase (PLK),1 we determined the crystal structures of PLK.AMP-PCP-pyridoxamine, PLK.ADP.PLP, and PLK.ADP complexes. Comparisons of these structures have revealed that PLK exhibits different conformations during its catalytic process. After the binding of AMP-PCP (an analogue that replaced ATP) and pyridoxamine to PLK, this enzyme retains a conformation similar to that of the PLK.ATP complex. The distance between the reacting groups of the two substrates is 5.8 A apart, indicating that the position of ATP is not favorable to spontaneous transfer of its phosphate group. However, the structure of PLK.ADP.PLP complex exhibited significant changes in both the conformation of the enzyme and the location of the ligands at the active site. Therefore, it appears that after binding of both substrates, the enzyme-substrate complex requires changes in the protein structure to enable the transfer of the phosphate group from ATP to vitamin B(6). Furthermore, a conformation of the enzyme-substrate complex before the transition state of the enzymatic reaction was also hypothesized.  相似文献   

19.
H C Cheung  C K Wang  N A Malik 《Biochemistry》1987,26(18):5904-5907
We have determined the free energy of formation of the binary complexes formed between skeletal troponin C and troponin T (TnC.TnT) and between troponin T and troponin I (TnT.TnI). This was accomplished by using TnC fluorescently modified at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine for the first complex and TnI labeled at Cys-133 with the same probe for the other complex. The free energy of the ternary complex formed between troponin C and the binary complex TnT.TnI [TnC.(TnT.TnI)] was also measured by monitoring the emission of 5-(iodoacetamido)eosin attached to Cys-133 of the troponin I in TnT.TnI. The free energies were -9.0 kcal.mol-1 for TnC.TnT, -9.2 kcal.mol-1 for TnT.TnI, and -8.7 kcal.mol-1 for TnC.(TnT.TnI). In the presence of Mg2+ the free energies of TnC.TnT and TnC.(TnT.TnI) were -10.3 and -10.9 kcal.mol-1, respectively; in the presence of Ca2+ the corresponding free energies were -10.6 and -13.5 kcal.mol-1. Mg2+ and Ca2+ had negligible effect on the free energy of TnT.TnI. From these results the free energies of the formation of troponin from the three subunits were found to be -16.8 kcal.mol-1, -18.9 kcal.mol-1, and -21.6 kcal.mol-1 in the presence of EGTA, Mg2+, and Ca2+, respectively. Most of the free energy decrease caused by Ca2+ binding to the Ca2+-specific sites is derived from stabilization of the TnI-TnC linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
W M Kati  S A Acheson  R Wolfenden 《Biochemistry》1992,31(32):7356-7366
Nebularine undergoes hydration at the active site of adenosine deaminase, in a reaction analogous to a partial reaction in the displacement of ammonia from adenosine by water, to generate an inhibitory complex that captures much of the binding affinity expected of an ideal transition-state analogue. Enzyme affinities of several compounds related to nebularine 1,6-hydrate, and to its stable analog 2'-deoxycoformycin, were compared in an effort to identify the structural origins of strong binding. Binding of the stable transition-state analog inhibitor 2'-deoxycoformycin was rendered 9.8 kcal/mol less favorable by removal of substituent ribose, 9.7 kcal/mol less favorable by inversion of the 8-hydroxyl substituent of the diazepine ring, and 10.0 kcal/mol less favorable by removal of atoms 4-6 of the diazepine ring. Binding of the unstable transition-state analog nebularine hydrate was rendered at least 9.9 kcal/mol less favorable by removal of the 6-hydroxyl group and 10.2 kcal/mol less favorable by removal of atoms 1-3 of the pyrimidine ring. In each case, the enzyme exhibited only modest affinity (Kd greater than or equal to 10(-2) M) for the "missing piece", indicating that incorporation of 2 binding determinants within a single molecule permits an additional 7-12 kcal/mol of intrinsic binding energy to be manifested as observed binding energy. These results are consistent with earlier indications that adenosine deaminase may use 10.5 kcal/mol of the intrinsic free energy of binding of the two substrates to place them in positions appropriate for reaction at the active site, overcoming the unfavorable entropy change of -35 eu for the equilibrium of 1,6-hydration of purine ribonucleoside and reducing the equilibrium constant for attainment of the transition state in deamination of adenosine. Thus, adenosine deaminase may achieve up to 8 orders of magnitude of its catalytic power by converting the nonenzymatic, bimolecular, hydration reaction to a monomolecular reaction at its active site. Several new 6-substituted 1,6-dihydropurine ribonucleosides, prepared by photoaddition of formate and by low-temperature addition of organolithium reagents to a derivative of purine ribonucleoside, exhibited Ki values of 9-1400 microM against adenosine deaminase, in accord with the active site's considerable tolerance of bulky leaving groups in substrates. Inhibition by one diastereomer of 6-carboxy-1,6-dihydropurine ribonucleoside was found to be time-dependent, progressing from a weakly bound to a more strongly bound complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号