首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel peptides with opiate activity, derived from endogenous sources (human and bovine casomorphins from milk, hemorphins from hemoglobin, and cytochrophins from mitochondrial cytochrome b), were tested for their ability to inhibit binding of the brain peptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) to its high affinity sites in rat brain. The order of potency in inhibiting binding of 125I-Tyr-MIF-1 was: hemorphin and bovine casomorphins greater than Tyr-MIF-1 greater than cytochrophins greater than human casomorphins. Naloxone and DAMGO were ineffective at inhibiting Tyr-MIF-1 binding. The results provide evidence that, in addition to their ability to bind to mu opiate receptors, these novel endogenous peptides with opiate activity and a peptide (Tyr-MIF-1) with antiopiate properties also bind to a non-opiate site labeled by Tyr-MIF-1. These sites could be involved in a balance between opiate and antiopiate peptides.  相似文献   

2.
Pan W  Kastin AJ 《Peptides》2007,28(12):2411-2434
The Tyr-MIF-1 family of small peptides has served a prototypic role in the introduction of several novel concepts into the peptide field of research. MIF-1 (Pro-Leu-Gly-NH2) was the first hypothalamic peptide shown to act “up” on the brain, not just “down” on the pituitary. In several situations, including clinical depression, MIF-1 exhibits an inverted U-shaped dose–response relationship in which increasing doses can result in decreasing effects. This tripeptide also can antagonize opiate actions, and the first report of such activity also correctly predicted the discovery of other endogenous antiopiate peptides. The tetrapeptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) not only shows antiopiate activity, but also considerable selectivity for the mu-opiate binding site. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) is an even more selective ligand for the mu receptor, leading to the discovery of two more Tyr-Pro tetrapeptides that have the highest specificity and affinity for this site. These are the endomorphins: endomorphin-1 is Tyr-Pro-Trp-Phe-NH2 and endomorphin-2 is Tyr-Pro-Phe-Phe-NH2. Tyr-MIF-1 proved, contrary to the then prevailing dogma, that peptides can be saturably transported across the blood–brain barrier by a quantifiable transport system. Unexpectedly, the Tyr-MIF-1 transporter is shared with Met-enkephalin. In the era in which it was doubtful whether a peripheral peptide could exert CNS effects, the Tyr-MIF-1 family of peptides also explicitly showed that they can exert more than one central action that persists longer than their half-lives in blood. These peptides clearly illustrate that the name of a peptide restricts neither its actions nor its conceptual implications.  相似文献   

3.
Opiate addiction could involve a change in the binding of endogenous antiopiates. A candidate for such a role is Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2), a brain peptide that can antagonize exogenous and endogenous opiates and bind to opiate receptors. Its primary action, however, may be through its own binding site in brain, which we now report is altered by chronic administration of morphine. Rats given morphine pellets had reduced binding of both iodinated and tritiated Tyr-MIF-1 on day 5, when substantial tolerance is evident. In contrast, mu and delta opiate receptors were increased. Acute injection of an analgesic dose of morphine did not reduce Tyr-MIF-1 binding, indicating that chronic administration is required for the change. These findings open new approaches to the study of addiction by focusing on antiopiate activity.  相似文献   

4.
Existence of antiopiate systems as illustrated by MIF-1/Tyr-MIF-1   总被引:2,自引:0,他引:2  
Z H Galina  A J Kastin 《Life sciences》1986,39(23):2153-2159
Evidence is presented that the small peptides MIF-1/Tyr-MIF-1 are part of an endogenous antiopiate system that may function to balance the opiate system. We review the biological activity, behavioral activity, and functional effects of this proposed opiate antagonist system. In addition, we suggest, based on antinociceptive mechanisms, that the individual components of the antiopiate system might function differently from naloxone.  相似文献   

5.
MIF-1 and Tyr-MIF-1 augment GABA-stimulated benzodiazepine receptor binding   总被引:1,自引:0,他引:1  
L G Miller  A J Kastin 《Peptides》1987,8(5):751-755
Behavioral evidence in laboratory animals and human beings indicates possible links between the endogenous opiate and gamma-aminobutyric acid (GABA)-benzodiazepine receptor systems, especially with regard to antagonistic properties. To assess possible interactions between endogenous opiate antagonists and benzodiazepine receptor binding, we evaluated the effects of the peptides MIF-1 and Tyr-MIF-1 on benzodiazepine receptor binding in mouse brain membranes. Neither peptide affected receptor binding in cortex over a broad dose range, but both peptides significantly augmented GABA-stimulated benzodiazepine receptor binding at GABA concentrations of 10(-8) and 10(-7) M. Rosenthal-Scatchard analysis indicated that the increase in binding was largely due to increased apparent affinity. Both peptides augmented GABA-enhanced binding at low doses (MIF-1 10(-11) M, Tyr-MIF-1 10(-13) M) with decreased effects at higher doses. In cerebellum and brainstem, MIF-1 tended to enhance GABA-stimulated binding but Tyr-MIF-1 was inactive. These results indicate benzodiazepine-opiate and benzodiazepine-peptide interactions.  相似文献   

6.
Specific radioimmunoassays have been developed for the measurement of naturally occurring morphiceptin and beta-casomorphin. These peptides and related exorphins were isolated from an enzymatic digest of caseins by chromatographic techniques including gel filtration, hydrophobic column and multiple-step high pressure liquid chromatography. Three exorphins were purified and characterized in their radioimmunological, biological, and chemical properties. They were identified as morphiceptin, beta-casomorphin, and 8-prolyl-beta-casomorphin. Since morphiceptin is a highly specific mu-agonist and can be derived from a milk protein, it is possible that morphiceptin is an exogenous opioid ligand specific for mu-receptors in the brain and gastrointestinal tract.  相似文献   

7.
A novel tetrapeptide, Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1), was purified from extracts of frontal cortex of human brain tissue by several consecutive reversed-phase high performance liquid chromatographic steps followed by a radioimmunoassay originally developed for Tyr-Pro-Leu-Gly-NH2 (Tyr-MIF-1). Sequencing, mass spectrometric analysis, and comparison of its chromatographic behavior with that of the synthetic peptide confirmed the structure. Like Tyr-MIF-1, which was previously isolated from human brain tissue, Tyr-W-MIF-1 can inhibit the binding of 3H-DAMGO (selective for mu opiate receptors) to rat brain and can act as an opiate agonist as well as antagonist. Tyr-W-MIF-1 was a more potent opiate agonist than Tyr-MIF-1, the free acid of Tyr-W-MIF-1, and the structurally related hemoglobin-derived opiate peptide hemorphin-4 (Tyr-Pro-Trp-Thr) in the guinea pig ileum. Each of these peptides acted as opiate antagonists on the ileum from morphine-tolerant guinea pigs; the free acid of Tyr-W-MIF-1 was the most potent antagonist in inhibiting the activity of DAMGO. The results demonstrate the presence in human brain of a new member of the Tyr-MIF-1 family of biologically active peptides.  相似文献   

8.
The effects of body rotation in a horizontal plane and various opiate antagonists on the nociceptive responses of a day-active microtine rodent, the meadow vole, Microtus pennsylvanicus, were examined. Intermittent rotation (70 rpm, schedule of 30 sec on, 30 sec off) for 30 min induced significant analgesic responses in the voles for 15 min after rotation. These increases in thermal response latency were blocked by intraperitoneal pretreatment with either naloxone or the irreversible mu opiate receptor antagonist beta-funaltrexamine (beta-FNA; 10 mg/kg; 24 hr pretreatment). This antagonistic effect of beta-FNA indicates mu opioid involvement in the mediation of rotation-induced analgesia. The antiopiate peptides MIF-1 (Pro-Leu-Gly-NH2) and Tyr-MIF-1 also significantly reduced, though did not completely block, body rotation-induced opiate analgesia. This suggests that Tyr-MIF-1 and MIF-1 have significant antagonistic effects on mu opioid systems that are involved in the mediation of stress (rotation)-induced analgesia.  相似文献   

9.
Z K Krowicki 《Life sciences》1991,49(16):1163-1168
It has been demonstrated that cimetidine blocks the effect of naloxone on footshock-induced analgesia. To study the effect of cimetidine on the antiopiate properties of an endogenous peptide Tyr-MIF-1, the opiate form of intermittent footshock-induced analgesia was elicited in the rat. The nociceptive responses were determined using the hot-plate test (52.5 degrees C). Intraperitoneal pretreatment with cimetidine (100 mg/kg) or chlorpheniramine maleate (20 mg/kg) did not affect the footshock-induced analgesia, and did not change the antagonizing effect of Tyr-MIF-1 (0.2 mg/kg) on this model of antinociception. It is concluded that cimetidine and chlorpheniramine maleate do not change the antagonizing effect of Tyr-MIF-1 on the opiate form of intermittent footshock-induced analgesia.  相似文献   

10.
The brain peptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) was tested for its effects on electrically stimulated contractions in the guinea pig ileum assay. Tyr-MIF-1 acted as an opiate agonist in reducing these contractions. Its IC50 was about 9 microM, and its effects were reversed by naloxone and CTOP. The ability of Tyr-MIF-1 also to antagonize the inhibitory effects of opiates on electrically stimulated contractions was more evident in the ileum removed from a guinea pig tolerant to morphine or after partial inactivation of opiate receptors with beta-CNA. Similar results were observed with hemorphin. The endogenous peptide Tyr-MIF-1 and the blood-derived peptide hemorphin, therefore, can act as agonists as well as antagonists in the guinea pig ileum. The effects as antagonists are best observed in preparations of ileum with reduced receptor reserve (tolerant or beta-CNA treated) and are consistent with the idea that properties of endogenous peptides as opiate antagonists are enhanced in the tolerant state.  相似文献   

11.
E-rosette formation by human lymphocytes incubated with sheep red blood cells (sRBC) is inhibited by morphine. We studied the ability of the opiate antagonists naloxone and Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) to block this action. Active E-rosette formation by lymphocytes incubated with morphine was reduced from the control of 35.7±1.7% to 23.7±1.5% (p<0.001). Similarly, total E-rosette formation was reduced by morphine from the control of 65.8±1.3% to 53.2±2.9% (p<0.001). These effects were blocked by co-incubation of the lymphocytes with either Tyr-MIF-1 or naloxone (p<0.05). Tyr-MIF-1 was active (p<0.05) at concentrations as dilute as 10−13M. These results indicate that the neuropeptide Tyr-MIF-1 exerts an antiopiate effect at the human T-lymphocyte.  相似文献   

12.
Saturable transport of peptides across the blood-brain barrier   总被引:3,自引:0,他引:3  
W A Banks  A J Kastin 《Life sciences》1987,41(11):1319-1338
Peptides can be transported across the blood-brain barrier by saturable transport systems. One system, characterized with radioactively labeled Tyr-MIF-1 (Tyr-Pro-Leu-Gly-amide), is specific for some of the small peptides with an N-terminal tyrosine, including Tyr-MIF-1, the enkephalins, beta-casomorphin, and dynorphin (1-8). Another separate system transports vasopressin-like peptides. The choroid plexus has at least one system distinguishable from those above that is capable of uptake and possibly transport of opiate-like peptides. The possibility of saturable transport of other peptides has been investigated to a varying degree. Specificity, stereo-specificity, saturability, allosteric regulation, modulation by physiologic and pharmacologic manipulations, and noncompetitive inhibition have been demonstrated to occur in peptide transport systems and suggest a role for them in physiology and disease.  相似文献   

13.
J Hedner  T Hedner 《Life sciences》1987,41(20):2303-2312
Bovine beta-casomorphin, beta-casomorphin, morphiceptin or morphine were administered systemically (i.v. or i.p.) and intracerebroventricularly (lateral or IVth ventricles) to anesthetized adult rats and preterm newborn rabbits. All agents caused dose-related depressions of respiratory frequency and tidal volume. Morphiceptin and beta-casomorphin were approximately equipotent to morphine while beta-casomorphin was 10 times as potent after intracerebroventricular injection. The beta-casomorphins decreased inspiratory drive and prolonged the expiratory phase by delaying the setpoint for inspiration. A respiratory depression could be elicited by systemic administration of morphiceptin but not by beta-casomorphin or beta-casomorphin. All ventilatory effects induced by the beta-casomorphins could be readily reversed or prevented by naloxone. Intracerebroventricular but not intraperitoneal injection of beta-casomorphin depressed ventilation in preterm newborn rabbits in a similar pattern with apnoic periods to that seen in the adult rats. In addition, an irregular breathing pattern was elicited. Thus, the bovine beta-casomorphins possess potent central respiratory depressive effects. However, after systemic administration, only morphiceptin which is more metabolically stable induced a shortlasting effect on ventilation in adult rats.  相似文献   

14.
The amidated beta-casomorphin morphiceptin Tyr-Pro-Phe-Pro-NH2 is an opioid peptide isolated from bovine milk beta-casein digests whose physiological significance remains unclear. Opiates are known to modify intestinal electrolyte transport by acting on receptors located on the serosal side of the intestine. The aim of the present study was to determine under what conditions morphiceptin can act from the luminal side. When added to the serosal side of untreated rabbit ileum in an Ussing chamber in vitro, 10(-3) M morphiceptin acted through an opiate mechanism to reduce simultaneously short-circuit current (delta Isc = 0.33 +/- 0.07 muEq.hr-1.cm-2) and stimulate net Na and Cl absorption (delta JnetNa = 1.62 +/- 0.11 and delta JnetCl = 2.07 +/- 0.08 muEg.hr-1.cm-2). After mucosal addition under the same conditions, morphiceptin was degraded without any opiate action on electrolyte transport. Pretreatment of the ileum by 10(-3) M diisopropylfluorophosphate, which inhibited brush-border dipeptidylpeptidase IV, prevented mucosal degradation of morphiceptin. Under these conditions, morphiceptin was able, when added mucosally, to cross the epithelium intact (Jm----s = 1.8 +/- 0.16 nmole.hr-1.cm-2) and to stimulate electrolyte absorption by means of an opioid mechanism (delta Isc = 0.22 +/- 0.02 muEq.hr-1.cm-2). These results showed that the action of morphiceptin from the lumen depends on its transfer intact to the serosal side of the intestine where the opiate receptors are located. The limiting step in this transfer is at the brush-border membrane, where dipeptidylpeptidase IV in particular seems to play a major role.  相似文献   

15.
Endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) binds with high affinity and selectivity to the mu-opioid receptor. In the present study, [125I]endomorphin-2 has been used to characterize mu-opioid-binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin-2 (1 nM) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (K(d) = 18.79 +/- 1.13 nM, B(max) = 635 +/- 24 fmol/mg protein) and the other shows low affinity and higher capacity (K(d) = 7.67 +/- 0.81 microM, B(max) = 157 +/- 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin-2 binding site was [d-1-Nal3]morphiceptin > endomorphin-2 > [d-Phe3]morphiceptin > morphiceptin > [d-1-Nal3]endomorphin-2, indicating binding of these peptides to mu-opioid receptors. The uptake of 131I-labeled peptides administered intraperitoneally to tumor-bearing mice was also investigated. The highest accumulation in the tumor was observed for [d-1-Nal3)morphiceptin, which reached the value of 8.19 +/- 1.14% dose/g tissue.  相似文献   

16.
Previous studies have shown that methionine enkephalin and Tyr-MIF-1 are transported from the brain to the blood by a saturable, stereospecific, carrier-mediated process. It was not established by these studies whether Tyr-MIF-1 and methionine enkephalin were transported by the same system or by separate, but overlapping systems. This issue was investigated in anesthetized mice receiving injections containing both 131I-methionine enkephalin and 125I-Tyr-MIF-1 into the lateral ventricle of the brain. Mice were decapitated and the brain to blood transport rate was derived from the residual counts in the brain. It was found that in individual mice, the transport rate for Tyr-MIF-1 correlated highly with the transport rate for methionine enkephalin but not with the transport of iodide. This shows that the transport of Tyr-MIF-1 is closely coupled to the transport of methionine enkephalin but dissociable from the brain to blood transport of iodide. Furthermore, the inability of varying doses of Tyr-MIF-1 or of methionine enkephalin to preferentially self-inhibit is radiolabeled form in comparison with the other peptide shows that, functionally, only a single system exists. Aluminum, a noncompetitive inhibitor of Tyr-MIF-1 transport, was also without preferential inhibition. Thus, under the conditions of these studies, only a single system could be functionally demonstrated for the transport of both Tyr-MIF-1 and methionine enkephalin.  相似文献   

17.
M Million  J Fioramonti  L Bueno 《Peptides》1992,13(3):469-474
The effects of orally administered Tyr-MIF-1, an agonist of an endogenous antiopiate system, were examined on gastric emptying in mice and gastrointestinal myoelectric activity in rats. Tyr-MIF-1 (5 mg/kg in mice, 20 mg/kg in rats) accelerated gastric emptying of a methylcellulose test meal, increased the frequency of antral spike bursts, and disrupted intestinal migrating myoelectric complexes. These effects were reproduced by a subcutaneous administration of Tyr-MIF-1 at the same dosage. They were blocked by naloxone (1 mg/kg) but not by the kappa receptor subtype antagonist MR 2266 (1 mg/kg). The GABAA antagonist bicuculline (0.5 mg/kg), but not the GABAB antagonist 2-hydroxysaclofen (4 mg/kg), also antagonized the effects of Tyr-MIF-1. These data demonstrate that oral Tyr-MIF-1 stimulates gastric emptying and gastrointestinal motility through a systemic or central action that involves opioid and GABA systems.  相似文献   

18.
Goldfish pituitary gonadotropin-releasing hormone (GnRH) receptors were characterized by using a superagonist analog of teleost GnRH (tGnRH-A; [D-Arg6, Trp7, Leu8, Pro9-NHEt]-GnRH). Equilibrium binding of 125I-tGnRH-A to a goldfish pituitary membrane preparation was achieved after a 30-min incubation at 4 degrees C; binding was significantly reduced after increasing incubation temperature to 22 degrees C. Binding of the radioligand was a function of tissue concentration, with a linear correlation over the range of 0.5-2 pituitary per tube. Incubation of the pituitary membrane preparation with increasing concentrations of 125I-tGnRH-A indicated saturable binding at radioligand concentrations of 470 pM and above. The binding of 125I-tGnRH-A was found to be reversible after addition of the cold analog, and the dissociation curve could be resolved into two linear components; slower rates of dissociation of 125I-tGnRH-A were observed after the addition of excess unlabeled tGnRH than after the addition of tGnRH-A, indicating that the analog is more effective in displacing the label than the native peptide. Addition of the cold analog displaced bound 125I-GnRH-A, and Scatchard analysis suggested the presence of at least two classes of binding sites: a high-affinity/low-capacity site and a low-affinity/high-capacity site. Bound 125I-GnRH-A was displaced by tGnRH from both sites in parallel to that observed with tGnRH-A, indicating that both peptides bind to the same classes of binding sites; however, tGnRH-A had a greater affinity for the receptors than the native tGnRH. These results demonstrated the presence and provided characterization of GnRH receptors in goldfish pituitary.  相似文献   

19.
There is evidence suggesting that the endogenous tetrapeptide, Tyr-MIF-1 (Tyr-Prol-Leu-Gly-amide), has antagonistic or modulatory effects on opioid-mediated analgesia. There is also substantial evidence for sex differences in opioid effects, whereby male rodents display greater levels of opioid-mediated analgesia than females. In the present study, determinations were made of the effects of Tyr-MIF-1 on morphine- and restraint stress-induced opioid analgesia in adult male and female deer mice, Peromyscus maniculatus. Intraperitoneal treatment with Tyr-MIF-1 (0.10–10 mg/kg) reduced morphine- and stress-induced analgesia in both male and female mice, with Tyr-MIF-1 having markedly greater antagonistic effects in male than female mice. These results indicate that there are sex differences in the modulatory (antiopiate) effects of Tyr-MIF-1 on opioid-mediated analgesia.  相似文献   

20.
The binding characteristics of mu, delta, and kappa opiate sites were studied in rat brain and spinal cord membrane homogenates. Scatchard analysis of 3H-Dihydromorphine, 3H-D-Ala2-D-Leu5-Enkephalin (in the presence of morphiceptin), and 3H-Ethylketocyclazocine (in the presence of morphiceptin and D-Ala2-D-Leu5-Enkephalin) binding sites revealed similar high affinities of these ligands for their respective sites in brain and spinal cord. The majority of binding in brain and spinal cord was attributed to mu and delta sites, with only about 10% of the combined total binding capacity being kappa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号