首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Alcadeins (Alcs)/calsyntenins and the amyloid beta-protein precursor (APP) associate with each other in the brain by binding via their cytoplasmic domains to X11L (the X11-like protein). We previously reported that the formation of this APP-X11L-Alc tripartite complex suppresses the metabolic cleavages of APP. We show here that the metabolism of the Alcs markedly resembles that of APP. The Alcs are subjected to a primary cleavage event that releases their extracellular domain. Alcs then undergo a secondary presenilin-dependent gamma-cleavage that leads to the secretion of the amyloid beta-protein-like peptide and the liberation of an intracellular domain fragment (AlcICD). However, when Alc is in the tripartite complex, it escapes from these cleavages, as does APP. We also found that AlcICD suppressed the FE65-dependent gene transactivation activity of the APP intracellular domain fragment, probably because AlcICD competes with the APP intracellular domain fragment for binding to FE65. We propose that the Alcs and APP are coordinately metabolized in neurons and that their cleaved cytoplasmic fragments are reciprocally involved in the regulation of FE65-dependent gene transactivation. Any imbalance in the metabolism of Alcs and APP may influence the FE65-dependent gene transactivation, which together with increased secretion of amyloid beta-protein may contribute to neural disorders.  相似文献   

2.
X11 and X11-like proteins (X11L) are neuronal adaptor proteins whose association to the cytoplasmic domain of amyloid beta-protein precursor (APP) suppresses the generation of amyloid beta-protein (Abeta) implicated in Alzheimer disease pathogenesis. The amyloidogenic, but not amyloidolytic, metabolism of APP was selectively increased in the brain of mutant mice lacking X11L (Sano, Y., Syuzo-Takabatake, A., Nakaya, T., Saito, Y., Tomita, S., Itohara, S., and Suzuki, T. (2006) J. Biol. Chem. 281, 37853-37860). To reveal the actual role of X11 proteins (X11s) in suppressing amyloidogenic cleavage of APP in vivo, we generated X11 and X11L double knock-out mice and analyzed the metabolism of APP. The mutant mice showed enhanced beta-site cleavage of APP along with increased accumulation of Abeta in brain and increased colocalization of APP with beta-site APP-cleaving enzyme (BACE). In the brains of mice deficient in both X11 and X11L, the apparent relative subcellular distributions of both mature APP and its beta-C-terminal fragment were shifted toward the detergent-resistant membrane (DRM) fraction, an organelle in which BACE is active and both X11s are not nearly found. These results indicate that X11s associate primarily with APP molecules that are outside of DRM, that the dissociation of APP-X11/X11L complexes leads to entry of APP into DRM, and that cleavage of uncomplexed APP by BACE within DRM is enhanced by X11s deficiency. Present results lead to an idea that the dysfunction of X11L in the interaction with APP may recruit more APP into DRM and increase the generation of Abeta even if BACE activity did not increase in brain.  相似文献   

3.
The phosphotyrosine binding domain of the neuronal protein X11alpha/mint-1 binds to the C-terminus of amyloid precursor protein (APP) and inhibits catabolism to beta-amyloid (Abeta), but the mechanism of this effect is unclear. Coexpression of X11alpha or its PTB domain with APPswe inhibited secretion of Abeta40 but not APPsbetaswe, suggesting inhibition of gamma- but not beta-secretase. To further probe cleavage(s) inhibited by X11alpha, we coexpressed beta-secretase (BACE-1) or a component of the gamma-secretase complex (PS-1Delta9) with APP, APPswe, or C99, with and without X11alpha, in HEK293 cells. X11alpha suppressed the PS-1Delta9-induced increase in Abeta42 secretion generated from APPswe or C99. However, X11alpha did not impair BACE-1-mediated proteolysis of APP or APPswe to C99. In contrast to impaired gamma-cleavage of APPswe, X11alpha or its PTB domain did not inhibit gamma-cleavage of NotchDeltaE to NICD (the Notch intracellular domain). The X11alpha PDZ-PS.1Delta9 interaction did not affect gamma-cleavage activity. In a cell-free system, X11alpha did not inhibit the catabolism of APP C-terminal fragments. These data suggest that X11alpha may inhibit Abeta secretion from APP by impairing its trafficking to sites of active gamma-secretase complexes. By specifically targeting substrate instead of enzyme X11alpha may function as a relatively specific gamma-secretase inhibitor.  相似文献   

4.
Accumulation of cerebral amyloid beta-protein (Abeta) is believed to be part of the pathogenic process in Alzheimer's disease. Abeta is derived by proteolytic cleavage from a precursor protein, the amyloid precursor protein (APP). APP is a type-1 membrane-spanning protein, and its carboxyl-terminal intracellular domain binds to X11beta, a neuronal adaptor protein. X11beta has been shown to inhibit the production of Abeta in transfected non-neuronal cells in culture. However, whether this is also the case in vivo in the brain and whether X11beta can also inhibit the deposition of Abeta as amyloid plaques is not known. Here we show that transgenic overexpression of X11beta in neurons leads to a decrease in cerebral Abeta levels in transgenic APPswe Tg2576 mice that are a model of the amyloid pathology of Alzheimer's disease. Moreover, overexpression of X11beta retards amyloid plaque formation in these APPswe mice. Our findings suggest that modulation of X11beta function may represent a novel therapeutic approach for preventing the amyloid pathology of Alzheimer's disease.  相似文献   

5.
Intracellular trafficking and proteolytic processing of amyloid precursor protein (APP) have been the focus of numerous investigations over the past two decades. APP is the precursor to the amyloid beta-protein (Abeta), the 38-43-amino acid residue peptide that is at the heart of the amyloid cascade hypothesis of Alzheimer disease (AD). Tremendous progress has been made since the initial identification of Abeta as the principal component of brain senile plaques of individuals with AD. Specifically, molecular characterization of the secretases involved in Abeta production has facilitated cell biological investigations on APP processing and advanced efforts to model AD pathogenesis in animal models. This minireview summarizes salient features of APP trafficking and amyloidogenic processing and discusses the putative biological functions of APP.  相似文献   

6.
Processing of the beta-amyloid precursor protein (APP) plays a key role in Alzheimer disease neuropathogenesis. APP is cleaved by beta- and alpha-secretase to produce APP-C99 and APP-C83, which are further cleaved by gamma-secretase to produce amyloid beta-protein (Abeta) and p3, respectively. APP adaptor proteins with phosphotyrosine-binding domains, including X11alpha (MINT1, encoded by gene APBA1) and X11beta (MINT2, encoded by gene APBA2), can bind to the conserved YENPTY motif in the APP C terminus. Overexpression of X11alpha and X11beta alters APP processing and Abeta production. Here, for the first time, we have described the effects of RNA interference (RNAi) silencing of X11alpha and X11beta expression on APP processing and Abeta production. RNAi silencing of APBA1 in H4 human neuroglioma cells stably transfected to express either full-length APP or APP-C99 increased APP C-terminal fragment levels and lowered Abeta levels in both cell lines by inhibiting gamma-secretase cleavage of APP. RNAi silencing of APBA2 also lowered Abeta levels, but apparently not via attenuation of gamma-secretase cleavage of APP. The notion of attenuating gamma-secretase cleavage of APP via the APP adaptor protein X11alpha is particularly attractive with regard to therapeutic potential given that side effects of gamma-secretase inhibition due to impaired proteolysis of other gamma-secretase substrates, e.g. Notch, might be avoided.  相似文献   

7.
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.  相似文献   

8.
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.  相似文献   

9.
Gross GG  Feldman RM  Ganguly A  Wang J  Yu H  Guo M 《PloS one》2008,3(6):e2495
The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of beta- and gamma-secretase, which result in the generation of toxic beta-amyloid (Abeta) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by gamma-secretase is likely to provide insight into AD pathogenesis. Here, using transgenic flies that act as reporters for endogenous gamma-secretase activity and/or APP levels (GAMAREP), and for the APP intracellular domain (AICDREP), we identified mutations in X11L and ubiquilin (ubqn) as genetic modifiers of APP. Human homologs of both X11L (X11/Mint) and Ubqn (UBQLN1) have been implicated in AD pathogenesis. In contrast to previous reports, we show that overexpression of X11L or human X11 does not alter gamma-secretase cleavage of APP or Notch, another gamma-secretase substrate. Instead, expression of either X11L or human X11 regulates APP at the level of the AICD, and this activity requires the phosphotyrosine binding (PTB) domain of X11. In contrast, Ubqn regulates the levels of APP: loss of ubqn function leads to a decrease in the steady state levels of APP, while increased ubqn expression results in an increase in APP levels. Ubqn physically binds to APP, an interaction that depends on its ubiquitin-associated (UBA) domain, suggesting that direct physical interactions may underlie Ubqn-dependent regulation of APP. Together, our studies identify X11L and Ubqn as in vivo regulators of APP. Since increased expression of X11 attenuates Abeta production and/or secretion in APP transgenic mice, but does not act on gamma-secretase directly, X11 may represent an attractive therapeutic target for AD.  相似文献   

10.
Amyloid plaques, composed of the amyloid beta-protein (Abeta), are hallmark neuropathological lesions in Alzheimer disease (AD) brain. Abeta fulfills a central role in AD pathogenesis, and reduction of Abeta levels should prove beneficial for AD treatment. Abeta generation is initiated by proteolysis of amyloid precursor protein (APP) by the beta-secretase enzyme BACE1. Bace1 knockout (Bace1(-/-)) mice have validated BACE1 as the authentic beta-secretase in vivo. BACE1 is essential for Abeta generation and represents a suitable drug target for AD therapy, especially because this enzyme is up-regulated in AD. However, although initial data indicated that Bace1(-/-) mice lack an overt phenotype, the BACE1-mediated processing of APP and other substrates may be important for specific biological processes. In this minireview, topics range from the initial identification of BACE1 to the fundamental knowledge gaps that remain in our understanding of this protease. We address pertinent questions such as putative causes of BACE1 elevation in AD and discuss why, nine years since the identification of BACE1, treatments that address the underlying pathological mechanisms of AD are still lacking.  相似文献   

11.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

12.
Leissring MA  Farris W  Chang AY  Walsh DM  Wu X  Sun X  Frosch MP  Selkoe DJ 《Neuron》2003,40(6):1087-1093
Converging evidence suggests that the accumulation of cerebral amyloid beta-protein (Abeta) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Abeta thus represents a novel therapeutic approach to lowering steady-state Abeta levels, but the consequences of sustained upregulation in vivo have not been studied. Here we show that transgenic overexpression of insulin-degrading enzyme (IDE) or neprilysin (NEP) in neurons significantly reduces brain Abeta levels, retards or completely prevents amyloid plaque formation and its associated cytopathology, and rescues the premature lethality present in amyloid precursor protein (APP) transgenic mice. Our findings demonstrate that chronic upregulation of Abeta-degrading proteases represents an efficacious therapeutic approach to combating Alzheimer-type pathology in vivo.  相似文献   

13.
In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.  相似文献   

14.
Processing of the amyloid precursor protein (APP) leads to the production of amyloid-beta (Abeta), the major component of extracellular plaques in the brains of Alzheimer's disease (AD) patients. Presenilin-1 (PS-1) plays a key role in the final step of Abeta formation, the gamma-secretase cleavage. Previously, we showed that PS-1 is retained in pre-Golgi compartments by incorporation into COPI-coated membranes of the vesicular tubular clusters (VTCs) between endoplasmic reticulum (ER) and Golgi complex. Here, we show that PS-1 also mediates the retention of the beta-cleavage-derived APP-C-terminal fragment (CTFbeta) and/or Abeta in pre-Golgi membranes. Overexpression of PS-1 increased the percentage of CTFbeta and/or Abeta in VTCs as well as their distribution to COPI-coated VTC membranes. By contrast, overexpression of the dominant-negative aspartate mutant PS-1(D257A) or PS-knockout decreased incorporation of these APP derivatives into COPI-coated membranes. Sorting of APP derivatives to COPI-coated VTC membranes was not depending on the APP cytosolic tail. In post-Golgi compartments, PS-1 expression enhanced the association of full-length APP/APPs with endosomal compartments at the expense of plasma membrane-bound APP. We conclude that PS-1, in addition to its role in gamma-secretase cleavage, is also required for the subcellular routing of APP and its derivatives. Malfunctioning of PS-1 in this role may have important consequences for the progress of AD.  相似文献   

15.
To examine how gamma- and epsilon-cleavages of beta-amyloid precursor protein (APP) are related, each cleavage site was replaced with a stretch of Trp that cannot be cleaved by gamma-secretase. Replacement of the gamma- or epsilon-site significantly suppressed secretion of amyloid beta-protein (Abeta), and produced longer Abeta or longer APP intracellular domain, respectively. This cleavage at the midportion between gamma- and epsilon-sites was also gamma-secretase-dependent. Blocking this cleavage with a Trp stretch remarkably suppressed Abeta generation, indicating that the midportion cleavage is required for the generation of Abeta.  相似文献   

16.
17.
Modulation of amyloid precursor protein (APP) metabolism plays a pivotal role in the pathogenesis of Alzheimer's disease. The phosphotyrosine-binding/protein interaction (PTB/PI) domain of X11alpha, a neuronal cytosolic adaptor protein, binds to the YENPTY sequence in the cytoplasmic carboxyl terminus of APP. This interaction prolongs the half-life of APP and inhibits Abeta40 and Abeta42 secretion. X11alpha/Mint-1 has multiple protein-protein interaction domains, a Munc-18 interaction domain (MID), a Cask/Lin-2 interaction domain (CID), a PTB/PI domain, and two PDZ domains. These X11alpha protein interaction domains may modulate its effect on APP processing. To test this hypothesis, we performed a deletion analysis of X11alpha effects on metabolism of APP(695) Swedish (K595N/M596L) (APP(sw)) by transient cotransfection of HEK 293 cells with: 1) X11alpha (X11alpha-wt, N-MID-CID-PTB-PDZ-PDZ-C), 2) amino-terminal deletion (X11alpha-DeltaN, PTB-PDZ-PDZ), 3) carboxyl-terminal deletion (X11alpha-DeltaPDZ, MID-CID-PTB), or 4) deletion of both termini (PTB domain only, PTB). The carboxyl terminus of X11alpha was required for stabilization of APP(sw) in cells. In contrast, the amino terminus of X11alpha was required to stimulate APPs secretion. X11alpha, X11alpha-DeltaN, and X11alpha-PTB, but not X11alpha-DeltaPDZ, were effective inhibitors of Abeta40 and Abeta42 secretion. These results suggest that additional protein interaction domains of X11alpha modulate various aspects of APP metabolism.  相似文献   

18.
Neuronal cell death, neurofibrillary tangles, and amyloid beta peptide (Abeta) deposition depict Alzheimer's disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Abeta is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Abeta. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Abeta-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Abeta, and secreted Abeta, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.  相似文献   

19.
The main component of Alzheimer's disease (AD) senile plaques is amyloid-beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP). Platelets contain both APP and Abeta and may contribute to the perivascular amyloid deposition seen in AD. However, no data are available concerning the biochemical mechanism(s) involved in their formation and release by these cells. We found that human platelets released APP and Abeta following activation with collagen or arachidonic acid. Inhibition of platelet cyclooxygenase (COX) reduced APP but not Abeta release following those stimuli. In contrast, activation of platelets by thrombin and calcium ionophore caused release of both APP and Abeta in a COX-independent fashion. Ex vivo studies showed that, despite suppression of COX activity, administration of aspirin did not modify Abeta or APP levels in serum or plasma, suggesting that this enzyme plays only a minor role in vivo. We examined the regulation of APP cleavage and release from activated platelets and found that cleavage requires protein kinase C (PKC) activity and is regulated by the intracellular second messengers phosphatidylinositol 2-phosphate and Ca(2+). Our data provide the first evidence that in human platelets COX is a minor component of APP secretion whereas PKC plays a major role in the secretory cleavage of APP. By contrast, Abeta release may represent secretion of preformed peptide and is totally independent of both COX and PKC activity.  相似文献   

20.
Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid accumulation in the brain remain unclear. We provide evidence that treatment of AD mutant neuroblastoma cells or primary neurons with Abeta antibodies decreases levels of intracellular Abeta. Antibody-mediated reduction in cellular Abeta appears to require that the antibody binds to the extracellular Abeta domain of the amyloid precursor protein (APP) and be internalized. In addition, treatment with Abeta antibodies protects against synaptic alterations that occur in APP mutant neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号