首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim To test the importance of the Lago Mare stage of the Messinian Salinity Crisis for the dispersal and diversification of European leuciscins (Cyprinidae: Leuciscinae). Location Europe. Methods Cytochrome b sequences of European leuciscins were employed to investigate phylogenetic relationships among species, using Bayesian inference, and to estimate times of diversification, using a relaxed molecular clock. The distributions of 190 European leuciscins were compiled, and regional species compositions were compared using a taxonomic similarity index and an area cladogram. Results Leuciscins restricted to the Iberian and Italian peninsulas and the West and South Balkan regions are phylogenetically more closely related to northern European species than to species from another southern European area. Application of a relaxed molecular clock to a Bayesian phylogeny indicates that most southern clades originated and diversified prior to the Messinian. Southern European regions are taxonomically distinct from one another, and from a more taxonomically homogeneous group of areas that includes Anatolia, East Balkans, Middle East, North Europe and West Russia. Main conclusions The scenario of a Messinian period of dispersal of Paratethyan fauna into Mediterranean regions, via the Lago Mare, predicts a rapid period of diversification and a pattern of close association among southern European faunas. Phylogenetic relationships among leuciscins, the timing of cladogenic events, and the taxonomic similarity among geographical regions do not conform to this expectation. The depth of clades endemic to southern Europe, together with the high levels of endemism in these regions, suggests that the faunas in these regions diverged prior to the Messinian and have evolved largely in isolation from one another. Our results support a model of gradual colonization of Mediterranean regions since the Oligocene. Subsequent connections between adjacent areas may have occurred in the Messinian or Pleistocene.  相似文献   

2.
At the intersection of geological activity, climatic fluctuations, and human pressure, the Mediterranean Basin – a hotspot of biodiversity – provides an ideal setting for studying endemism, evolution, and biogeography. Here, we focus on the Roucela complex (Campanula subgenus Roucela), a group of 13 bellflower species found primarily in the eastern Mediterranean Basin. Plastid and low‐copy nuclear markers were employed to reconstruct evolutionary relationships and estimate divergence times within the Roucela complex using both concatenation and species tree analyses. Niche modeling, ancestral range estimation, and diversification analyses were conducted to provide further insights into patterns of endemism and diversification through time. Diversification of the Roucela clade appears to have been primarily the result of vicariance driven by the breakup of an ancient landmass. We found geologic events such as the formation of the mid‐Aegean trench and the Messinian Salinity Crisis to be historically important in the evolutionary history of this group. Contrary to numerous past studies, the onset of the Mediterranean climate has not promoted diversification in the Roucela complex and, in fact, may be negatively affecting these species. This study highlights the diversity and complexity of historical processes driving plant evolution in the Mediterranean Basin.  相似文献   

3.
Aim There are few biogeographical and evolutionary studies that address plant colonization and lineage origins in the Mediterranean. Cistus serves as an excellent model with which to study diaspore dispersal and distribution patterns of plants exhibiting no special long‐distance dispersal mechanisms. Here we analyse the pattern of genetic variation and divergence times to infer whether the African–European disjunction of C. ladanifer L. is the result of long‐distance dispersal or of vicariance events. Location Principally the Western Mediterranean region, with a focus on the Strait of Gibraltar. Methods We used DNA sequence phylogenetic approaches, based on plastid (rbcL/trnK‐matK) and nuclear (ITS) sequence data sets, and the penalized likelihood method, to date the diversification of the 21 species of Cistus. Phylogenetic relationships and phylogeographical patterns in 47 populations of C. ladanifer were also analysed using two plastid DNA regions (trnS‐trnG, trnK‐matK). These sequence data were analysed using maximum parsimony, Bayesian inference and statistical parsimony. Results Dating estimates indicated divergence dates of the C. ladanifer lineage in the Pleistocene. Eight nucleotide‐substitution haplotypes distributed on the European (four haplotypes) and African (five haplotypes) sides of the Strait of Gibraltar were revealed from C. ladanifer sequences. Both the haplotype network and the phylogenetic analyses depicted two main Cistus lineages distributed in both Europe and North Africa. An Iberian haplotype forms part of the North African lineage, and another haplotype distributed on both continents is related to the European lineage. Haplotype relationships with respect to outgroup sequences supported the hypothesis that the centre of genetic diversity is in northern Africa. Main conclusions Based on lineage divergence‐time estimates and disassociation between geographical and lineage haplotype distributions, we inferred at least two intercontinental colonization events of C. ladanifer post‐dating the opening of the Strait of Gibraltar (c. 5 Ma). This result supports a hypothesis of long‐distance dispersal rather than a hypothesis of vicariance. We argue that, despite limited dispersal abilities, preference for disturbed habitats was integral to historical colonization after the advent of the Mediterranean climate (c. 3.2 Ma), when Cistus species diverged and became established as a dominant element in the Mediterranean scrub.  相似文献   

4.

Background

Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma).

Methodology/Principal Findings

We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnLUAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece.

Conclusions/Significance

The current distribution of Linaria sect. Versicolores lineages is explained by both ancient isolation between African and European populations and recent events of long-distance dispersal over sea barriers. This result provides new evidence for the biogeographic complexity of the Mediterranean region.  相似文献   

5.
We used mitochondrial cyt b sequences to investigate the phylogenetic relationships of Crocidura russula (sensu lato) populations across the Strait of Gibraltar, western Europe, Maghreb, and the Mediterranean and Atlantic islands. This revealed very low genetic divergence between European and Moroccan populations. The application of a molecular clock previously calibrated for shrews suggested that the separation of European from Moroccan lineages occurred less than 60 000 bp, which is at least 5 million years (Myr) after the reopening of the Strait of Gibraltar. This means that an overwater dispersal event was responsible for the observed phylogeographical structure. In contrast, genetic analyses revealed that Moroccan populations were highly distinct from Tunisian ones. According to the molecular clock, these populations separated about 2.2 million years ago (Ma), a time marked by sharp alternations of dry and humid climates in the Maghreb. The populations of the Mediterranean islands Ibiza, Pantelleria, and Sardinia were founded from Tunisian populations by overwater dispersal. In conclusion, overwater dispersal across the Strait of Gibraltar, probably assisted by humans, is possible for small terrestrial vertebrates. Moreover, as in Europe, Quaternary climatic fluctuations had a major effect on the phylogeographical structure of the Maghreb biota.  相似文献   

6.
The desiccation of the Mediterranean Sea during the Messinian Salinity Crisis 6.0-5.3 million years ago (Ma), caused a major extinction of the marine ichthyofauna of the Mediterranean. This was followed by an abrupt replenishment of the Mediterranean from the Atlantic after the opening of the Strait of Gibraltar. In this study, we combined demographic and phylogeographic approaches using mitochondrial and nuclear DNA markers to test the alternative hypotheses of where (Atlantic or Mediterranean) and when (before or after the Messinian Salinity Crisis) speciation occurred in the Mediterranean damselfish, Chromis chromis. The closely related geminate transisthmian pair Chromis multilineata and Chromis atrilobata was used as a way of obtaining an internally calibrated molecular clock. We estimated C. chromis speciation timing both by determining the time of divergence between C. chromis and its Atlantic sister species Chromis limbata (0.93-3.26 Ma depending on the molecular marker used, e.g. 1.23-1.39 Ma for the control region), and by determining the time of coalescence for C. chromis based on mitochondrial control region sequences (0.14-0.21 Ma). The time of speciation of C. chromis was always posterior to the replenishment of the Mediterranean basin, after the Messinian Salinity Crisis. Within the Mediterranean, C. chromis population structure and demographic characteristics revealed a genetic break at the Peloponnese, Greece, with directional and eastbound gene flow between western and eastern groups. The eastern group was found to be more recent and with a faster growing population (coalescent time = 0.09-0.13 Ma, growth = 485.3) than the western group (coalescent time = 0.13-0.20 Ma, growth = 325.6). Our data thus suggested a western origin of C. chromis, most likely within the Mediterranean. Low sea water levels during the glacial periods, the hydrographic regime of the Mediterranean and dispersal restriction during the short pelagic larval phase of C. chromis (18-19 days) have probably played an important role in C. chromis historical colonization.  相似文献   

7.
The subgenera of Wiedemannia are poorly defined and, as such, most recently described species are not assigned to a subgenus or have been assigned to a subgenus without explanation. In this study we perform a molecular phylogenetic analysis to elucidate relationships within the genus Wiedemannia. We sequenced two mitochondrial (cytochrome oxidase c subunit I and cytochrome β) and two nuclear (carbomoylphosphate synthase domain of rudimentary and elongation factor‐1α) gene fragments to reconstruct phylogenetic relationships among the subgenera Chamaedipsia, Eucelidia, Philolutra, Pseudowiedemannia, Roederella and Wiedemannia (s.s.) using both Bayesian inference and maximum likelihood approaches. The genus was found to be monophyletic, but most of the subgenera were not. We propose eliminating the present subgeneric division altogether. Molecular dating using a log‐normal clock model and calibration with fossil species indicated that Wiedemannia diversified about 48 Ma, while there was still land connectivity between Europe and Asia with North America. Wiedemannia has a near‐worldwide distribution apart from the Australasian and Neotropical regions and Antarctica, with greatest species richness in the western Palaearctic, especially the Mediterranean region. Molecular phylogenetics support more recent morphological studies. The subgenera of Wiedemannia are invalid and rejected. Biogeographical data suggest potential hotspots, and the current distribution is discussed.  相似文献   

8.
The genus Pseudamnicola comprises a group of tiny springsnails inhabiting several continental and insular regions of the Mediterranean basin. Given the limited dispersal capabilities of these animals, it is difficult to explain the wide distribution range of the genus and, more specifically, its presence in isolated habitats, such as on islands. Thus, to investigate the process(es) that may explain these distribution patterns, we morphologically re‐described and genetically analysed the six Pseudamnicola (Pseudamnicola) species occurring in the Iberian Peninsula and the nearby Balearic Islands. Genetic relationships were explored by sequencing two mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and one nuclear (28S rRNA) gene in 19 populations. Our morphological study confirmed the presence of previously described species, whereas our phylogenetic results revealed three lineages within the subgenus: one clade grouping the species from Minorca Island with an Iberian Peninsula species, a second clade grouping the three species from Majorca Island, and a third clade that consists of a single species, which occurs in both the Iberian Peninsula and Ibiza Island. Calculated speciation times show that the cladogenetic events involving the insular species seem to have occurred after the current conformation of the Balearic Islands (c. 20 Mya). Therefore, the speciation process may have been related to subsequent transmarine colonizations, probably during the Messinian Salinity Crisis, and the Pleistocene glaciations when landmass corridors connected the islands with the continent. © 2014 The Linnean Society of London  相似文献   

9.
Tragopogon comprises approximately 150 described species distributed throughout Eurasia from Ireland and the UK to India and China with a few species in North Africa. Most of the species diversity is found in Eastern Europe to Western Asia. Previous phylogenetic analyses identified several major clades, generally corresponding to recognized taxonomic sections, although relationships both among these clades and among species within clades remain largely unresolved. These patterns are consistent with rapid diversification following the origin of Tragopogon, and this study addresses the timing and rate of diversification in Tragopogon. Using BEAST to simultaneously estimate a phylogeny and divergence times, we estimate the age of a major split and subsequent rapid divergence within Tragopogon to be ~2.6 Ma (and 1.7–5.4 Ma using various clock estimates). Based on the age estimates obtained with BEAST (HPD 1.7–5.4 Ma) for the origin of crown group Tragopogon and 200 estimated species (to accommodate a large number of cryptic species), the diversification rate of Tragopogon is approximately 0.84–2.71 species/Myr for the crown group, assuming low levels of extinction. This estimate is comparable in rate to a rapid Eurasian radiation in Dianthus (0.66–3.89 species/Myr), which occurs in the same or similar habitats. Using available data, we show that subclades of various plant taxa that occur in the same semi‐arid habitats of Eurasia also represent rapid radiations occurring during roughly the same window of time (1.7–5.4 Ma), suggesting similar causal events. However, not all species‐rich plant genera from the same habitats diverged at the same time, or at the same tempo. Radiations of several other clades in this same habitat (e.g. Campanula, Knautia, Scabiosa) occurred at earlier dates (45–4.28 Ma). Existing phylogenetic data and diversification estimates therefore indicate that, although some elements of these semi‐arid communities radiated during the Plio‐Pleistocene period, other clades sharing the same habitat appear to have diversified earlier.  相似文献   

10.
Phylogeography of red deer (Cervus elaphus) in Europe   总被引:1,自引:0,他引:1  
Aim To investigate the phylogeographical patterns of red deer (Cervus elaphus) in Europe, and to disentangle the influence of ancient (e.g. Pleistocene ice ages) from more recent processes (e.g. human translocations). Location Europe. Methods In this study we provide by far the most extensive analysis of genetic structure in European red deer, based on analyses of variation at two mitochondrial markers (cyt b and D‐loop) in a large number of individuals from 39 locations. Relationships of mitochondrial DNA haplotypes were determined using minimum spanning networks and phylogenetic analyses. Population structure was examined by analyses of molecular variance. Historical processes shaping the present patterns were inferred from nested clade analysis and nucleotide diversity statistics. Results Within Europe, we detected three deeply divergent mitochondrial DNA lineages. The three lineages displayed a phylogeographical pattern dividing individuals into western European, eastern European and Mediterranean (Sardinia, Spain and Africa) groups, suggesting contraction into three separate refugia during the last glaciation. Few haplotypes were shared among these three groups, a finding also confirmed by FST values. Calculations of divergence times suggest that the groups probably split during the Pleistocene. Main conclusions The observed pattern is interpreted to result from isolation in different refugia during the last glaciation. The western and eastern European lineages could be linked to an Iberian and Balkan refugium, respectively. The third lineage might originate from a Sardinian or African refugium. We link local phylogeographical patterns observed in Europe to the post‐glacial recolonization process, shaped by the geographical localization of refugia and barriers to gene flow. Regardless of the importance of red deer as a game species and the tradition of translocating red deer in Europe, we detected few individuals that did not match the trichotomous pattern, suggesting that translocations have occurred mainly at smaller spatial scales.  相似文献   

11.
The Greek endemic isopod species Trachelipus aegaeus is distributed in Aegean islands and the adjacent coastal parts of the Greek mainland. Major palaeogeographic events of the Aegean archipelago, such as the formation of the mid‐Aegean trench and the Messinian Salinity Crisis, have been often employed as major causal factors of evolutionary events and phylogeographic patterns exhibited by several taxa. Herein, we infer phylogenetic relationships among T. aegaeus populations using partial cytochrome oxidase subunit I (COI) and 16S rRNA sequences. Due to the poor preservation of the specimens, we propose a modified DNA extraction protocol, which returned highly positive results in terms of the quality of the total extracted DNA. We implement a calibrated molecular clock and path sampling analysis, using alternative palaeogeographic events and rates of substitution, to evaluate the biogeographic history of the species and to estimate the chronology of diversification events among its populations. Our results are clearly in favour of the scenario of the MAT triggering vicariance among most T. aegaus populations. Moreover, the large intraspecific genetic divergence (0–19% for COI and 0–20.3% for the 16S rRNA) and the overall phylogeographic patterns depicted herein seem not to have been obscured by more recent palaeogeological events. A role of dispersal, probably human‐aided, is assumed for certain ‘deviant’ cases.  相似文献   

12.
Aim Various data sets and methods of analysis were combined to produce the first comprehensive molecular phylogeny of the genus Tuber and to analyse its biogeography. Location Europe, North Africa, China, Asia, North America. Methods Phylogenetic relationships among Tuber species were reconstructed based on a data set of internal‐transcribed spacer (ITS) sequences and various phylogenetic inference methods, specifically maximum parsimony, Bayesian analysis and neighbour joining. Tajima’s relative rate test showed that Tuber 18S rRNA, 5.8S rRNA, 5.8S‐ITS2 rRNA and β‐tubulin sequences evolved in a clock‐like manner. These genes, combined or not, were employed for molecular clock estimates after construction of linearized trees using mega 3.1. We reconstructed ancestral areas in the Northern Hemisphere by means of a dispersal–vicariance analysis (diva 1.1) based on current distribution patterns of the genus Tuber determined from the literature. Results The resulting molecular phylogeny divided the genus Tuber into five distinct clades, in agreement with our previously published studies. The Puberulum, Melanosporum and Rufum groups were diversified in terms of species and geographical distribution. In contrast, the Aestivum and Excavatum groups were less diversified and were located only in Europe or North Africa. Using a global molecular clock analysis, we estimated the divergence times for the origin of the genus and for the origin of several groups. diva inferred nine dispersal events and suggested that the ancestor of Tuber was originally present in Europe or was widespread in Eurasia. Equally optimal distributions were obtained for several nodes, suggesting different possible biogeographical patterns. Main conclusions Our analyses identified several discrepancies with the classical taxonomy of the genus, and we propose a new phylogenetic classification. According to molecular clocks, the radiation of the genus Tuber could have started between 271 and 140 Ma. Used in combination with the results obtained from time divergence estimates, this allows us to propose two equally probable scenarios of intra‐ and inter‐continental diversification of the genus according to the geographic distribution of the most recent common ancestor in Europe or Eurasia. The biogeographical patterns imply intra‐continental dispersal events between Europe and Asia and inter‐continental dispersal events between North America and Europe or Asia, which are compatible with land connections during the Tertiary.  相似文献   

13.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

14.
Aim Turdus thrushes are one of the most speciose and widespread songbird genera, comprising nearly 70 species that combined have a near‐global distribution. Herein, we use molecular phylogenetic, molecular clock and behavioural evidence to examine the historical biogeography of the genus. Ancestral area reconstructions in conjunction with divergence estimates and palaeoclimatogical data are used to test whether the long‐standing paradigm of Beringian colonization or trans‐Atlantic dispersal best explains modern distributions in the New and Old Worlds. Location Worldwide, with emphasis on New World–Old World biotic interchange. Methods Using a molecular phylogenetic hypothesis of Turdus thrushes, we reconstructed ancestral area relationships utilizing the five major continental or regional areas occupied by species in the genus. We also examined the evolution of behaviours on the phylogeny, and estimated the timing of major lineage divergences via a molecular clock. Results Turdus originated in Eurasia, and following the colonization of Africa underwent a series of five trans‐Atlantic sweepstake dispersals. The data reject the alternative hypothesis that connections between Old and New World Turdus species can be attributed to movement through Beringia with subsequent extinction. Divergence estimates indicate that these dispersals all occurred near the Miocene–Pliocene boundary, 5 Ma. A significant phylogenetic correlation between migratory and flocking behaviour is evident in the genus. Main conclusions The initial divergence of Turdus in the Old World was followed by a series of trans‐Atlantic sweepstake dispersal events. These dispersals are temporally correlated with a specific palaeoclimatic system, which would have facilitated transport of Turdus from the Caribbean to the Old World across the Atlantic. Uplift of the Central American Seaway 4.7 Ma effectively shut down the palaeoclimatic system, and no additional trans‐Atlantic dispersals are evident in Turdus after this time. Migratory movements by ancestral lineages in flocks, rather than as single individuals, suggest an increased likelihood of successfully colonizing new areas, post‐dispersal.  相似文献   

15.

Aim

We used comparative phylogeography of two intestinal parasites of freshwater fish to test whether similarity in life cycle translates into concordant phylogeographical history. The thorny‐headed worms Pomphorhynchus laevis and P. tereticollis (Acanthocephala) were formerly considered as a single species with a broad geographical and host range within the Western Palaearctic.

Location

Central and eastern parts of Northern Mediterranean area, Western and Central Europe, Ponto‐Caspian Europe.

Methods

A mitochondrial marker (COI) was sequenced for 111 P. laevis and 50 P. tereticollis individuals and nuclear ITS1 and ITS2 sequences were obtained for 37 P. laevis and 21 P. tereticollis. Genetic divergence, phylogenetic relationships and divergence time were estimated for various lineages within each species, and their phylogeographical patterns were compared to known palaeogeographical events in Western Palaearctic. Biogeographical histories of each species were inferred.

Results

The two species show very different phylogeographical patterns. Five lineages were identified in P. laevis, partially matching several major biogeographical regions defined in the European riverine fish fauna. The early stages of P. laevis diversification occurred in the peri‐Mediterranean area, during the Late Miocene. Subsequent expansion across Western Europe and Russia was shaped by dispersal and vicariant events, from Middle Pliocene to Middle Pleistocene. By contrast, P. tereticollis has differentiated more recently within the Western and Central parts of Europe, and shows weak geographical and genetic structuring.

Conclusion

Our study highlights weak to moderate similarity in the phylogeographical pattern of these acanthocephalan parasites compared to their amphipod and fish hosts. The observed differences in the timing of dispersion and migration routes taken may reflect the use of a range of final hosts with different ecologies and dispersal capabilities. By using a group underrepresented in phylogeographical studies, our study is a valuable contribution to revealing the biogeography of host–parasite interactions in continental freshwaters.  相似文献   

16.
In this study, we investigated the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the genus Troglophilus (Orthoptera, Rhaphidophoridae) from caves in eastern Mediterranean and Anatolia regions. Three mitochondrial DNA genes (COI, 12S rDNA, and 16S rDNA) and two nuclear ones (18S rDNA and 28S rDNA) were amplified and partially sequenced to reconstruct phylogenetic relationships among most of the known Troglophilus species. Results showed a well‐resolved phylogeny with three main clades representing the Balkan, the Anatolian, and the Cycladian–Cretan lineages. Based on Bayesian analyses, we applied a relaxed molecular clock model to estimate the divergence times between these three lineages. Dating estimates indicate that radiation of the ingroup might have been triggered by the opening of the Mid‐Aegean trench, while the uplift of the Anatolian Plateau in Turkey and the changes of relief, emergence, and disappearance of orographic and hydrographical barriers in the Balkan Peninsula are potential paleogeographic events responsible for the initial diversification of the genus Troglophilus. A possible biogeographic scenario, reconstructed using S‐DIVA with RASP software, suggested that the current distribution of Troglophilus species can be explained by a combination of both dispersal and vicariance events that occurred in particular in the ancestral populations. The radiation of Troglophilus species likely started from the Aegean and proceeded eastward to Anatolia and westward to the Balkan region. Results are additionally compared to those available for Dolichopoda, the only other representative genus of Rhaphidophoridae present in the Mediterranean area.  相似文献   

17.
Aim To investigate the effects of Pleistocene climatic variations on the diversification rate of the subgenus Calathus (Coleoptera: Carabidae), and to estimate the role of vicariance and dispersal for explaining current distributional patterns. Location Western Palaearctic Region, particularly the Mediterranean Basin. Methods Fragments of the mitochondrial cox1–cox2 and the nuclear 28S and EF1α genes were analysed by Bayesian inference. Lineage divergence times were estimated using a Bayesian relaxed molecular clock. Three diversification rate analyses were conducted, namely gamma (γ)‐statistic, birth–death likelihood (BDL) test and survival analyses, in order to test departures from a constant rate model of diversification. A Bayesian approach to dispersal–vicariance analysis was developed to reconstruct the most probable ancestral area of subgenus Calathus and subsequent events of dispersal and colonization. Results A constant rate of speciation events from the late Miocene onwards was found for the subgenus Calathus, whereas recent Pleistocene climatic oscillations played an important role only in shaping intraspecific diversity. Overall diversification patterns for the subgenus are best explained by at least four westward dispersal events from the eastern Mediterranean Basin. Three distinct phylogroups were found for the widely distributed Calathus fuscipes. Incongruence between mitochondrial and nuclear loci was found for a number of species. Main conclusions Diversification analyses suggest either a constant rate of diversification (BDL analysis) or a decrease in diversification rates for the subgenus (survival or γ‐statistics analyses), but not an increase related to the effects of glaciation cycles. Diversification patterns in the subgenus Calathus agree with predictions of the taxon pulse model. From the middle Miocene onwards the Anatolian Peninsula was possibly the main centre of diversification, with successive dispersal events towards the western Mediterranean Basin. Range expansion and secondary contact zones are postulated between members of different phylogroups in C. fuscipes.  相似文献   

18.
Aim The Mediterranean region is a species‐rich area with a complex geographical history. Geographical barriers have been removed and restored due to sea level changes and local climatic change. Such barriers have been proposed as a plausible mechanism driving the high levels of speciation and endemism in the Mediterranean basin. This raises the fundamental question: is allopatric isolation the mechanism by which speciation occurs? This study explores the potential driving influence of palaeo‐geographical events on the speciation of Cyclamen (Myrsinaceae), a group with most species endemic to the Mediterranean region. Cyclamen species have been shown experimentally to have few genetic barriers to hybridization. Location The Mediterranean region, including northern Africa, extending eastwards to the Black Sea coast. Methods A generic level molecular phylogeny of Myrsinaceae and Primulaceae is constructed, using Bayesian approximation, to produce a secondary age estimate for the stem lineage of Cyclamen. This estimate is used to calibrate temporally an infrageneric phylogeny of Cyclamen, built with nrDNA ITS, cpDNA trnL‐F and cpDNA rps16 sequences. A biogeographical analysis of Cyclamen is performed using dispersal–vicariance analysis. Results The emergence of the Cyclamen stem lineage is estimated at 30.1–29.2 Ma, and the crown divergence at 12.9–12.2 Ma. The average age of Cyclamen species is 3.7 Myr. Every pair of sister species have mutually exclusive, allopatric distributions relative to each other. This pattern appears typical of divergence events throughout the evolutionary history of the genus. Main conclusions Geographical barriers, such as the varying levels of the Mediterranean Sea, are the most plausible explanation for speciation events throughout the phylogenetic history of Cyclamen. The genus demonstrates distributional patterns congruent with the temporally reticulate palaeogeography of the Mediterranean region.  相似文献   

19.
Aim The presence of numerous reliable fossils and the occurrence of many endemic island species make the Boraginales particularly suitable for integrative biogeographical studies. In this paper we aim to elucidate the time frame and events associated with the origin of selected borages endemic to the Mediterranean climate zone. More specifically, we describe and examine the alternative palaeo‐ and neoendemic hypotheses for their origin. Location Corsica and Sardinia (continental fragment islands) and the Canary Islands (an oceanic island archipelago). Methods Eighty‐nine accessions, representing 30 genera from five families ascribed to the Boraginales, were examined for six chloroplast DNA regions. We used an integrative approach including phylogenetic analyses (Mr Bayes ), Bayesian molecular dating (T3 package) with four fossil constraints on nodes, and biogeographical reconstructions (diva ) to elucidate the temporal and spatial origins of the Corso‐Sardinian and Canary Island endemics. Results Species of Echium endemic to the Canary Islands diverged from their continental sister clade during the Miocene (15.3 ± 5.4 Ma), probably after the rise of the oldest islands (c. 20 Ma). Corso‐Sardinian endemics of Borago diverged from their primarily North African sister clade during the late Miocene‐Pliocene (c. 6.9 ± 3.6 Ma), well after the initial fragmentation of the islands (c. 30 Ma). Similarly, Corso‐Sardinian endemics of Anchusa diverged from the South African Anchusa capensis during the Pliocene–Pleistocene (c. 2.7 ± 2.1 Ma). Main conclusions The present study reveals an Anatolian origin for Anchusa, Borago and Echium and underlines the importance of the Eastern Mediterranean region as a possible reservoir for plant evolution in the Mediterranean Basin. For Anchusa and Borago, the divergence from their respective sister clades on the two types of islands post‐dated the formation of the islands, thus supporting the neo‐endemic hypothesis, whereas the dating results for the origin of Echium endemics were less conclusive.  相似文献   

20.
The Corsica–Sardinia archipelago is a hotspot of Mediterranean biodiversity. Although tempo and mode of arrival of species to this archipelago and phylogenetic relationships with continental species have been investigated in many taxa, very little is known about the current genetic structure and evolutionary history subsequent to arrival. In the present study, we investigated genetic variation within and among populations of the Tyrrhenian treefrog Hyla sarda, a species endemic to the Corsica–Sardinia microplate and the surrounding islands, by means of allozyme electrophoresis. Low genetic divergence (mean Dnei = 0.01) and no appreciable differences in the levels and distribution of genetic variability (HE: 0.06–0.09) were observed among all but one populations (Elba). Historical demographic and isolation‐by‐distance analyses indicated that this diffused genetic homogeneity could be the result of recent demographic expansion. Along with paleoenvironmental data, such expansion could have occurred during the last glacial phase, when wide and persistent land bridges connected the main islands and a widening of lowland areas occurred. This scenario is unprecedented among Corsica–Sardinia species. Together with the lack of concordance even among the few previously studied species, this suggests either that species had largely independent responses to paleoenvironmental changes, or that most of the history of assembly of the Corsica–Sardinia biota is yet to be written. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 159–167.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号