首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pre-mRNAs associate in the nucleus with specific RNA-binding proteins to form heterogeneous nuclear ribonucleoprotein (hnRNP) complexes. The hnRNP proteins participate directly or indirectly in the processing of pre-mRNAs into mature mRNAs. Recent studies have shown that some hnRNP proteins shuttle continuously between the nucleus and the cytoplasm. The export of shuttling hnRNP proteins from the nucleus is mediated by specific nuclear export sequences (NESs) within the proteins. In addition, shuttling hnRNP proteins appear to remain bound to exported mRNAs in transit through nuclear pores. As discussed in this review, the picture that is emerging is that nuclear export of mRNAs is mediated by the export of NES-containing hnRNP proteins to which they are bound.  相似文献   

2.
《Cell》1986,45(3):407-415
We have analyzed intracellular distributions of mRNAs for the cytoskeletal proteins actin, vimentin, and tubulin by in situ hybridization. Although polyadenylated RNA was homogeneously distributed throughout the cell, actin mRNA demonstrated a nonhomogeneous distribution in 95% of randomly selected chicken embryonic myoblasts and fibroblasts, as detected by isotopic and nonisotopic techniques. Actin mRNA concentrations were highest at cell extremities, generally in lamellipodia, where grain densities were up to 16-fold higher than in areas near the nucleus. Vimentin mRNA, unlike actin mRNA, was distributed near the nucleus. Tubulin mRNA appeared most concentrated in the peripheral cytoplasm. These results demonstrate that cytoplasmic mRNAs are localized in specific, nonrandom cellular patterns and that localized concentrations of specific proteins may result from corresponding localization of their respective mRNAs. Hence, actin mRNA distribution may result in increased concentration of actin filaments in lamellipodia of motile cells.  相似文献   

3.
We have investigated the contribution of an individual nucleus to intracellular and surface membranes in multinucleated muscle fibers. Using a retroviral vector, we introduced the gene encoding the human T-lymphocyte antigen CD8 into C2 mouse muscle cells to form a stable line expressing the human protein on its surface. The intracellular and surface distributions of the protein were then investigated by immunocytochemistry in hybrid myotubes containing a single nucleus expressing CD8. We show that the intracellular distribution of CD8 is limited to a local area surrounding the nucleus encoding it and several neighboring nuclei. On the cell surface, however, the protein is distributed over the entire myotube. Widespread distribution of a surface membrane protein in multinucleated myotubes can thus result from localized synthesis and processing.  相似文献   

4.
5.
6.
7.
Although it is universally accepted that protein synthesis occurs in the cytoplasm, the possibility that translation can also take place in the nucleus has been hotly debated. Reports have been published claiming to demonstrate nuclear translation, but alternative explanations for these results have not been excluded, and other experiments argue against it. Much of the appeal of nuclear translation is that functional proofreading of newly made mRNAs in the nucleus would provide an efficient way to monitor mRNAs for the presence of premature termination codons, thereby avoiding the synthesis of deleterious proteins. mRNAs that are still in the nucleus-associated fraction of cells are subject to translational proofreading resulting in nonsense-mediated mRNA decay and perhaps nonsense-associated alternate splicing. However, these mRNAs are likely to be in the perinuclear cytoplasm rather than within the nucleus. Therefore, in the absence of additional evidence, we conclude that nuclear translation is unlikely to occur.  相似文献   

8.
mRNA degradation machines in eukaryotic cells   总被引:13,自引:0,他引:13  
Tourrière H  Chebli K  Tazi J 《Biochimie》2002,84(8):821-837
  相似文献   

9.
Cells actively position their nucleus within the cytoplasm. One striking example is observed during skeletal myogenesis. Differentiated myoblasts fuse to form a multinucleated myotube with nuclei positioned in the centre of the syncytium by an unknown mechanism. Here, we describe that the nucleus of a myoblast moves rapidly after fusion towards the central myotube nuclei. This movement is driven by microtubules and dynein/dynactin complex, and requires Cdc42, Par6 and Par3. We found that Par6β and dynactin accumulate at the nuclear envelope of differentiated myoblasts and myotubes, and this accumulation is dependent on Par6 and Par3 proteins but not on microtubules. These results suggest a mechanism where nuclear movement after fusion is driven by microtubules that emanate from one nucleus that are pulled by dynein/dynactin complex anchored to the nuclear envelope of another nucleus.  相似文献   

10.
Mammalian skeletal myogenesis results in the differentiation of myoblasts to mature syncytial myotubes, a process regulated by an intricate genetic network of at least three protein families: muscle regulatory factors, E proteins, and Id proteins. MyoD, a key muscle regulatory factor, and its negative regulator Id1 have both been shown to be degraded by the ubiquitin-proteasome system. Using C2C12 cells and confocal fluorescence microscopy, we showed that MyoD and Id1 co-localize within the nucleus in proliferating myoblasts. In mature myotubes, in contrast, they reside in distinctive subcellular compartments, with MyoD within the nucleus and Id1 exclusively in the cytoplasm. Cellular abundance of Id1 was markedly diminished from the very onset of muscle differentiation, whereas MyoD abundance was reduced to a much lesser extent and only at the later stages of differentiation. These reductions in MyoD and Id1 protein levels seem to result from a change in the rate of protein synthesis rather than the rate of degradation. In vivo protein stability studies revealed that the rates of ubiquitin-proteasome-mediated MyoD and Id1 degradation are independent of myogenic differentiation state. Id1 and MyoD were both rapidly degraded, each with a t 1/2 approximately = 1 h in myoblasts and in myotubes. Furthermore, relative protein synthesis rates for MyoD and Id1 were significantly diminished during myoblast to myotube differentiation. These results provide insight as to the interaction between MyoD and Id1 in the process of muscle differentiation and have implications for the involvement of the ubiquitin-proteasome-mediated protein degradation and protein synthesis in muscle differentiation and metabolism under abnormal and pathological conditions.  相似文献   

11.
12.
13.
The conserved family of NXF proteins has been implicated in the export of messenger RNAs from the nucleus. In metazoans, NXFs heterodimerize with p15. The yeast genome encodes a single NXF protein (Mex67p), but there are multiple nxf genes in metazoans. Whether metazoan NXFs are functionally redundant, or their multiplication reflects an adaptation to a greater substrate complexity or to tissue-specific requirements has not been established. The Drosophila genome encodes one p15 homolog and four putative NXF proteins (NXF1 to NXF4). Here we show that depletion of the endogenous pools of NXF1 or p15 from Drosophila cells inhibits growth and results in a rapid and robust accumulation of polyadenylated RNAs within the nucleus. Fluorescence in situ hybridizations show that export of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs is inhibited. Depleting endogenous NXF2 or NXF3 has no apparent phenotype. Moreover, NXF4 is not expressed at detectable levels in cultured Drosophila cells. We conclude that Dm NXF1/p15 heterodimers only (but not NXF2-NXF4) mediate the export of the majority of mRNAs in Drosophila cells and that the other members of the NXF family play more specialized or different roles.  相似文献   

14.
15.
16.
17.
18.
The synthesis, turnover, and expression of all the major high mobility group (HMG) chromosomal proteins was studied in different rat skeletal myogenic cell lines. Whereas pulse-chase experiments revealed a similar half-life (greater than 2 cell generations) for all the HMG proteins in both L8 myoblasts and myotubes, [3H]lysine incorporation data indicated a 2- to 4-fold greater incorporation of the label in the HMG proteins in proliferating myoblasts relative to the nondividing myotubes. Analysis of the HMG-1, -14, and -17 mRNAs during myogenesis showed a significant down-regulation in L6 and L8 myotubes compared to the myoblasts. However, the timing of the shift and the extent of down-regulation was cell type-dependent, being more pronounced in L6 myotubes at fusion compared to 4 days postfusion in L8 myotubes. By contrast, L8-derived fusion-defective fu-1 cells over the same period of growth showed no change in HMG-14/17 mRNA levels. HMG-I(Y) protein isoforms, noted for the first time in rat myoblasts, like their counterparts, seemed to be stable and showed a precipitous reduction in their mRNAs during myogenesis. The results suggest a cell type-specific correlation between HMG expression and cell proliferation; they also argue for their role in maintenance of the cell's state of differentiation.  相似文献   

19.
20.
Dbp5 is the only member of the DExH/D box family of RNA helicases that is directly implicated in the export of messenger RNAs from the nucleus of yeast and vertebrate cells. Dbp5 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore complex (NPC). In an attempt to identify proteins present in a highly enriched NPC fraction, two other helicases were detected: RNA helicase A (RHA) and UAP56. This suggested a role for these proteins in nuclear transport. Contrary to expectation, we show that the Drosophila homolog of Dbp5 is not essential for mRNA export in cultured Schneider cells. In contrast, depletion of HEL, the Drosophila homolog of UAP56, inhibits growth and results in a robust accumulation of polyadenylated RNAs within the nucleus. Consequently, incorporation of [35S]methionine into newly synthesized proteins is inhibited. This inhibition affects the expression of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs. In HeLa nuclear extracts, UAP56 preferentially, but not exclusively, associates with spliced mRNAs carrying the exon junction complex (EJC). We conclude that HEL is essential for the export of bulk mRNA in Drosophila. The association of human UAP56 with spliced mRNAs suggests that this protein might provide a functional link between splicing and export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号