首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.  相似文献   

2.
We report a novel X-linked mental retardation (XLMR) syndrome, with characteristic facial dysmorphic features, segregating in a large North Carolina family. Only males are affected, over four generations. Clinical findings in the seven living affected males include a moderate degree of mental retardation (MR), coarse facies, puffy eyelids, narrow palpebral fissures, prominent supraorbital ridges, a bulbous nose, a prominent lower lip, large ears, obesity, and large testicles. Cephalometric measurements suggest that the affected males have a distinctive craniofacial skeletal structure, when compared with normative measures. Obligate-carrier females are unaffected with MR, but the results of cephalometric skeletal analysis suggest craniofacial dysmorphisms intermediate between affected males and normative control individuals. Unaffected male relatives show no clinical or cephalometric resemblance to affected males. The blood-lymphocyte karyotype and the results of DNA analysis for fragile-X syndrome and of other routine investigations are normal. Linkage analysis for polymorphic DNA markers spanning the X chromosome established linkage to Xq26-q27. Maximum LOD scores were obtained at marker DXS1047 (maximum LOD score = 3.1 at recombination fraction 0). By use of haplotype analysis, we have localized the gene for this condition to an 18-cM genetic interval flanked by ATA59C05 and GATA31E08. On the basis of both the clinical phenotype and the mapping data, we were able to exclude other reported XLMR conditions. Therefore, we believe that a unique recessive XLMR syndrome with a distinctive and recognizable phenotype is represented in this family.  相似文献   

3.
4.
Mutations in X-linked genes are likely to account for the observation that more males than females are affected by mental retardation. Causative mutations have recently been identified in both syndromic X-linked mental retardation (XLMR) and in the genetically heterogeneous 'nonspecific' forms of XLMR, for which cognitive impairment is the only defining clinical feature. Proteins that function in chromatin remodelling are affected in three important syndromic forms of XLMR. In nonspecific forms of the disorder, defects have been found in signal-transduction pathways that are believed to function during neuronal maturation. These findings provide important insights into the molecular and cellular defects that underlie mental retardation.  相似文献   

5.
A family is described in which three normal females transmitted to seven males X-linked mental retardation associated with macro-orchidism and a fragile site on the long arm of the X chromosome -- fra(X)(q27). The affected males also had minor clinical features in common: a large forehead, long face, large ears, a long upper lip and large extremities.  相似文献   

6.
Summary A family with X-linked mental retardation and a marker X chromosome was ascertained by the presence of macro-orchidism in the three institutionalized probands. Verbal evaluation revealed a generalized language disability with commonly occurring articulation errors. The heterozygous females in this family exhibited some reduction in mental ability; the marker X chromosome was demonstrated in both sexes.  相似文献   

7.
Renpenning syndrome maps to Xp11.   总被引:3,自引:1,他引:2       下载免费PDF全文
Mutations in genes on the X chromosome are believed to be responsible for the excess of males among individuals with mental retardation. Such genes are numerous, certainly >100, and cause both syndromal and nonsyndromal types of mental retardation. Clinical and molecular studies have been conducted on the Mennonite family with X-linked mental retardation (XLMR) reported, in 1962, by Renpenning et al. The clinical phenotype includes severe mental retardation, microcephaly, up-slanting palpebral fissures, small testes, and stature shorter than that of nonaffected males. Major malformations, neuromuscular abnormalities, and behavioral disturbances were not seen. Longevity is not impaired. Carrier females do not show heterozygote manifestations. The syndrome maps to Xp11.2-p11.4, with a maximum LOD score of 3.21 (recombination fraction 0) for markers between DXS1039 and DXS1068. Renpenning syndrome (also known as "MRXS8"; gene RENS1, MIM 309500) shares phenotypic manifestations with several other XLMR syndromes, notably the Sutherland-Haan syndrome. In none of these entities has the responsible gene been isolated; hence, the possibility that two or more of them may be allelic cannot be excluded at present.  相似文献   

8.
A recent study suggested that a dodecamer duplication in exon 42 of the HOPA gene in Xq13 may be a significant factor in the etiology of X-linked mental retardation. In an effort to investigate this possibility, we determined the incidence of the dodecamer duplication in cohorts of non-fragile X males with mental retardation from three countries, cohorts of fragile X males from two countries, 43 probands from families with X-linked mental retardation and control cohorts from three countries. The duplication was found in 3.6-4.0% of male patients from two non-fragile X groups (Italy and South Carolina), in 1.2% from another non-fragile X group (South Africa), but in no male patients from families with X-linked mental retardation (South Carolina). The dodecamer duplication was also found in several white males with fragile X syndrome from France (5%) and South Africa (22.2%). Additionally, the duplication was found in 1.5% of South Carolinian newborn males, 2.5% South Carolinian male college students, 5% Italian male controls and 4.5% of the white South African controls. None of the black South African non-fragile X individuals with mental retardation, the fragile X or the control samples tested carried the duplication, suggesting that the duplication is rare in the black South African population. The incidence of the duplication was not significantly different between any of the groups in the study. Therefore, results of our studies in four different populations do not corroborate the findings of the previous study, and indicate that the HOPA dodecamer duplication does not convey an increased susceptibility to mental retardation.  相似文献   

9.
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR is very heterogeneous, and about two-thirds of patients have clinically indistinguishable non-syndromic (NS-XLMR) forms, which has greatly hampered their molecular elucidation. A few years ago, international consortia overcame this impasse by collecting DNA and cell lines from large cohorts of XLMR families, thereby paving the way for the systematic study of the molecular causes of XLMR. Mutations in known genes might already account for 50% of the families with NS-XLMR, and various genes have been pinpointed that seem to be of particular diagnostic importance. Eventually, even therapy of XLMR might become possible, as suggested by the unexpected plasticity of the neuronal wiring in the brain, and the recent successful drug treatment of a fly model for fragile X syndrome.  相似文献   

10.
王香  朱子奇  陈频  陈德桂 《生命科学》2011,(10):997-1001
PHF8作为JmjC家族中的成员,通过对组蛋白赖氨酸的去甲基化酶活性来调节靶基因的转录。PHF8基因的一系列突变在X染色体连锁智力障碍(XLMR)患者中被发现。主要针对PHF8与XLMR发生的相关性以及PHF8的生化、生理功能进行阐述。  相似文献   

11.
We report on a large family in which a novel X-linked recessive mental retardation (XLMR) syndrome comprising macrocephaly and ciliary dysfunction co-segregates with a frameshift mutation in the OFD1 gene. Mutations of OFD1 have been associated with oral–facial–digital type 1 syndrome (OFD1S) that is characterized by X-chromosomal dominant inheritance and lethality in males. In contrast, the carrier females of our family were clinically inconspicuous, and the affected males suffered from severe mental retardation, recurrent respiratory tract infections and macrocephaly. All but one of the affected males died from respiratory problems in infancy; and impaired ciliary motility was confirmed in the index patient by high-speed video microscopy examination of nasal epithelium. This family broadens the phenotypic spectrum of OFD1 mutations in an unexpected way and sheds light on the complexity of the underlying disease mechanisms.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

12.
13.
14.
About 10% of causative mutations for mental retardation in male patients involve X chromosome (X-linked mental retardation, XLMR). We describe a case of a 3-year-old boy presenting with developmental delay, autistic features and growth and speech delay. Array-CGH analysis detected a microduplication on the X chromosome (Xp11.2p11.3), spanning 335.4 kb and including 3 known genes (ZNF81, ZNF182 and SPACA5). Genome-wide association studies show that approximately 30% of mutations causing XLMR are located in Xp11.2p11.3, where few pathogenic genes have been identified to date (such as ZNF41, PQB1 and ZNF81). ZNF81 codifies a zinc finger protein and mutations (non-sense mutations, deletions and structural rearrangements) involving this gene have already been described in association with mental retardation. Larger duplications in the same region have also been observed in association with mental retardation, and, in one case, the over-expression of ZNF81 has also been verified by mRNA quantification. No duplications of the single gene have been identified. To our knowledge, the microduplication found in our patient is the smallest ever described in Xp11.2p11.3. This suggests that the over-expression of ZNF81 could have pathological effects.  相似文献   

15.
It is a well-known fact that males predominate among the mentally retarded. Various explanations for this have been offered—among others, more exposure of the male fetus to external pathogenic influences in the antenatal period, a lower threshold of appearance of mutant polygenes responsible for mental retardation in males, or a high frequency of X-linked mental retardation [1]. The first two hypotheses have not been confirmed. Although a lower threshold of appearance of mental retardation in males has been demonstrated [2], this cannot explain such a major quantitative divergence between males and females as exists in mental retardation. It has not been easy to confirm the third hypothesis since the forms of X-linked hereditary pathology frequently appear sporadically, i.e., in only one boy in a family.  相似文献   

16.
In contrast to the preponderance of affected males in families with X-linked mental retardation, Rett syndrome (RTT) is a neurological disorder occurring almost exclusively in females. The near complete absence of affected males in RTT families has been explained by the lethal effect of an X-linked gene mutation in hemizygous affected males. We report here on a novel mutation (A140V) in the MECP2 gene detected in one female with mild mental retardation. In a family study, the A140V mutation was found to segregate in the affected daughter and in four adult sons with severe mental retardation. These results indicate that MECP2 mutations are not necessarily lethal in males and that they can be causative of non-specific X-linked mental retardation.  相似文献   

17.
Summary Data are presented suggesting that the form of X-linked mental retardation with macro-orchidism and the form associated with a fragile site at Xq27 or 28 are the same entity.  相似文献   

18.
In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain–containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.  相似文献   

19.
Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders.  相似文献   

20.
Array-based comparative genomic hybridization has proven to be successful in the identification of genetic defects in disorders involving mental retardation. Here, we studied a patient with learning disabilities, retinal dystrophy, and short stature. The family history was suggestive of an X-linked contiguous gene syndrome. Hybridization of full-coverage X-chromosomal bacterial artificial chromosome arrays revealed a deletion of ~1 Mb in Xp11.3, which harbors RP2, SLC9A7, CHST7, and two hypothetical zinc-finger genes, ZNF673 and ZNF674. These genes were analyzed in 28 families with nonsyndromic X-linked mental retardation (XLMR) that show linkage to Xp11.3; the analysis revealed a nonsense mutation, p.E118X, in the coding sequence of ZNF674 in one family. This mutation is predicted to result in a truncated protein containing the Kruppel-associated box domains but lacking the zinc-finger domains, which are crucial for DNA binding. We characterized the complete ZNF674 gene structure and subsequently tested an additional 306 patients with XLMR for mutations by direct sequencing. Two amino acid substitutions, p.T343M and p.P412L, were identified that were not found in unaffected individuals. The proline at position 412 is conserved between species and is predicted by molecular modeling to reduce the DNA-binding properties of ZNF674. The p.T343M transition is probably a polymorphism, because the homologous ZNF674 gene in chimpanzee has a methionine at that position. ZNF674 belongs to a cluster of seven highly related zinc-finger genes in Xp11, two of which (ZNF41 and ZNF81) were implicated previously in XLMR. Identification of ZNF674 as the third XLMR gene in this cluster may indicate a common role for these zinc-finger genes that is crucial to human cognitive functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号