首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prostaglandin I2, 6-ketoprostaglandin F, prostaglandin E1 and thromboxane B2 on the vascular permeability response in rat carrageenin granuloma were studied with the aid of 131I- and 125I-human serum albumin as indicators for the measurement of local vascular permeability.A single injection of 5 μg of prostaglandin I2 methyl ester or I2 sodium salt into the locus of the granulomatous inflammation elevated local vascular permeability 2.0–2.5 times over the control within 30 min. The potency was equal to that of the positive control prostaglandin E1 which has been known to be the most potent mediator in this index among several candidate prostaglandins for chemical mediator of inflammation. The other prostaglandin and thromboxane B2 tested were essentially inactive.  相似文献   

2.
Eicosanoids are potent mediators of inflammation and are synthesized in increased quantity in active ulcerative colitis. To elucidate the role of prostaglandin E2, thromboxane A2, prostaglandin I2, and leukotriene B2 in acute chemical colitis induced by 4% acetic acid, we utilized an animal model which has a deficiency of arachidonic acid, the precursor of eicosanoids due to an essential fatty acid deficient diet. Forty-eight hours after colitis was induced, mucosal synthesis of the cyclooxygenase products, prostaglandin E2, thromboxane A2, and prostaglandin I2, was significantly decreased in essential fatty acid deficient rats compared to normal controls. However, the 5-lipoxygenase product, leukotriene B4, was not different between groups. The decrease in cyclooxygenase products did not correlate with any change in the severity of colonic inflammation as assessed by gross morphology, histology, or myleoperoxidase activity. Thus inhibition of formation of the cyclooxygenase products of arachidonate metabolism does not appear to improve the degree of inflammation under the experimental conditions employed in this study.  相似文献   

3.
The release of prostaglandin E2 and F2 alpha, thromboxane B2 and 6-keto-prostaglandin F1 alpha was measured in isolated human placental cotyledons perfused under high- and low-oxygen conditions. Also the effect of reoxygenation on prostaglandin production was studied. During the high-oxygen period, prostaglandin E2 accounted for 44% and 6-keto-prostaglandin F1 alpha for 28% of all prostaglandin release, and the rank order of prostaglandin release was E2 greater than 6-keto-prostaglandin F1 alpha greater than thromboxane B2 greater than prostaglandin F2 alpha. Hypoxia had no significant effect on quantitative prostaglandin release, but the ratio of prostaglandin E2 to prostaglandin F2 alpha was significantly increased. After the hypoxic period during reoxygenation the release of 6-keto-prostaglandin F1 alpha was significantly decreased, as was the ratio of 6-keto-prostaglandin F1 alpha to thromboxane B2. Also the ratio of the vasodilating prostaglandins (E2, 6-keto-prostaglandin F1 alpha) to the vasoconstricting prostaglandins (thromboxane B2, prostaglandin F2 alpha) was decreased during reoxygenation period. With the constant flow rate, the perfusion pressure increased during hypoxia in six and was unchanged in three preparations. The results indicate that changes in the tissue oxygenation in the placenta affect prostaglandin release in the fetal placental circulation. This may also have circulatory consequences.  相似文献   

4.
Two selective thromboxane A2 synthetase inhibitors, imidazole and 9,11-azoprosta-5,13-dienoic acid (azo analog I) were compared to determine their effects on the quantitative formation of thromboxane B2 and prostaglandin E2 accompanying human platelet aggregation. Azo analog I was at least 200 times more potent, on a molar basis, than imidazole in suppressing thromboxane B2 formation in either platelet-rich plasma or washed platelet suspensions aggregated with arachidonic acid or prostaglandin H2. The inhibitors differed in their effect on the aggregation response itself. Azo analog I selectively suppressed thromboxane A2 formation with an accompanying, parallel, suppression of the platelet aggregation. Imidazole selectively suppressed thromboxane A2 formation, but only suppressed the accompanying aggregation in platelet rich plasma, and not washed platelet suspensions. The results indicate that azo analog I functions by competitive inhibition of prostaglandin H2 on the thromboxane synthetase, and that imidazole, while it suppresses thromboxane A2 formation, may have an associated agonist activity that enhances platelet aggregation. The data presented support this hypothesis, and they emphasize the importance of thromboxane A2 in arachidonate mediated platelet aggregation.  相似文献   

5.
This study investigates whether phorbol esters increase phosphoinositide hydrolysis in intact vascular smooth muscle, and the mechanism underlying the hydrolysis. Phorbol myristate acetate induced time- and concentration-dependent increases in phosphoinositide hydrolysis, as demonstrated by elevated inositol monophosphate levels, in deendothelialized rat aorta. The phorbol ester-elevated inositol monophosphate levels were abolished by indomethacin, a cyclooxygenase inhibitor, but were only partially decreased by SQ29548, a thromboxane A2/prostaglandin H2 receptor antagonist. SQ29548 also only partially decreased elevated inositol monophosphate levels due to prostaglandin E2, prostaglandin F2alpha, prostaglandin I2 and carbacyclin, a stable prostaglandin I2 analog. SQ29548 abolished elevated inositol monophosphate levels due to U46619, a stable thromboxane A2/prostaglandin H2 receptor agonist. These studies demonstrate that phorbol esters increase phosphoinositide hydrolysis in intact vascular smooth muscle, and that the increase is due, at lease in part, to endogenously released prostaglandins other than prostaglandin H2.  相似文献   

6.
Thromboxane B2, 6-keto-Prostaglandin F1 alpha, and Prostaglandin E2 release have been quantitated from cultured adult bovine endothelial cell monolayers and from ex Vivo vascular segments employing specific radioimmunoassays and thin layer chromatography. Release of all three prostaglandins was demonstrable from both endothelial cell systems under basal conditions and following exposure to the ionophore A23187 and arachidonic acid. In culture, the quantity of 6-keto-PGF1 alpha released was diminished compared to amounts released from the vessel segments while thromboxane B2 and prostaglandin E2 release were similar in the two endothelial model systems. However, the amount of thromboxane B2 assayed was small and the quantity of thromboxane A2 it represents is probably of little in vivo significance compared to prostacyclin.  相似文献   

7.
Resting rat pulmonary alveolar macrophages exposed to acrolein were stimulated to synthesize and release thromboxane B2 and prostaglandin E2 in a dose-dependent manner. Zymosan-activated pulmonary alveolar macrophages released approximately twice as much prostaglandin E2 as thromboxane B2, whereas acrolein-activated pulmonary alveolar macrophages released 4-5 times less prostaglandin E2 than thromboxane B2. In the zymosan-stimulated pulmonary alveolar macrophages, acrolein also induced a reversal in the relative amounts of prostaglandin E2 and thromboxane B2 synthesized and released into the culture medium. This reversal was achieved by a dose-dependent reduction in prostaglandin E2 synthesis. Although phagocytosis was also inhibited in a dose-dependent manner, the reduction in prostaglandin E2 appeared to be partially independent of particle ingestion since thromboxane B2 synthesis was not affected by low doses of acrolein. In fact, high doses induced a slight enhancement in thromboxane B2 synthesis. These results suggest that acrolein selectively inhibited the enzyme, prostaglandin endoperoxide E isomerase, necessary for the conversion of the endoperoxide to prostaglandin E2. Sulfhydryl reagents such as N-ethylmaleimide and 5,5'-dithiobis (2-nitrobenzoic acid) mimicked acrolein's effects, and reduced glutathione afforded protection against the effects of acrolein. These results indicated the possible involvement of acrolein's sulfhydryl reactivity in the inhibition of the isomerase enzyme. Propionaldehyde had no effect on macrophage arachidonic acid metabolism whereas crotonaldehyde mimicked the effects of acrolein. Pulmonary macrophages were unable to reverse the acrolein effects on arachidonate metabolite synthesis after 6 h in an acrolein-free environment. These data indicated the necessity of the unsaturated carbon bond for the acrolein effects on arachidonic acid metabolism and the relative irreversibility of acrolein's reaction with the macrophage.  相似文献   

8.
Increased vascular permeability was induced by prostaglandin E2 (PGE1), arachidonic acid and compound 48/80 in male rats. Natural ACTH in a dose-dependent manner inhibited Evans blue exudation elicited by arachidonic acid or compound 48/80, however, it was ineffective against PGE1. ACTH4--10 (d-Phe7 and 1-Phe7) injected together with the prophlogistic agents depressed the arachidonic acid and compound 48/80 induced vascular reaction. Indomethacin pretreatment inhibited the effect of arachidonic acid on vascular permeability suggesting that arachidonic acid evoked its vascular activity by means of affecting the endogenous synthesis of prostaglandins and, on the other hand, the prostaglandin system played a role in the vascular permeability inducing effect of compound 48/80. ACTH4--10 peptide fragments free of steroidogenic action and natural ACTH inhibited locally the in vivo formation of PGS from arachidonic acid in the rat skin, resulting in a nonspecific decrease of local inflammation.  相似文献   

9.
Thromboxane A2 (TXA2), a major prostanoid formed from prostaglandin H2 by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA2 mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-κB (NF-κB). U46619 induced the activation of NF-κB through IκB kinase (IKK) activation, IκB phosphorylation and NF-κB nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-κB activation in endothelial cells.  相似文献   

10.
In this study we investigated the role of a mixture of n-6/n-3 essential fatty acids, in the cyclosporine model nephrotoxicity. Administration of cyclosporine in rats decreased creatinine clearance and provoked body weight loss, but it did not induce proteinuria and did not alter the urine volume. These changes were associated with decreased urinary ratios of prostaglandin E/thromboxane B and prostaglandin I/thromboxane B excretions. Light microscopic sections showed that 100% of the animals were affected by histological tubular lesions on their kidneys. Administration of cyclosporine to animals fed for 3 months on standard chow containing a mixture of n - 6/n - 3 essential fatty acids, restored creatinine clearance, augmented urine volume and prevented body weight loss. The improvement of renal function was accompanied by increased urinary ratios of prostaglandin E/thromboxane B and prostaglandin I/thromboxane B excretions. Light microscopic sections showed that only 40% of the animals demonstrated histological tubular lesions, of minor importance, to their kidneys. Our results suggest that the metabolites of arachidonic acid can play important role in the development of cyclosporine-nephrotoxicity because they increase the levels of thromboxane A and that the enhanced synthesis of prostaglandins (E) and (I) induced by a mixture of n - 6/n - 3 essential fatty acids, could play a beneficial role in the prevention of this renal dysfunction.  相似文献   

11.
In this study we investigated the role of a mixture of n-6/n-3 essential fatty acids, in the cyclosporine model nephrotoxicity.Administration of cyclosporine in rats decreased creatinine clearance and provoked body weight loss, but it did not induce proteinuria and did not alter the urine volume. These changes were associated with decreased urinary ratios of prostaglandin E/thromboxane B and prostaglandin I/thromboxane B excretions. Light microscopic sections showed that 100% of the animals were affected by histological tubular lesions on their kidneys.Administration of cyclosporine to animals fed for 3 months on standard chow containing a mixture of n - 6/n - 3 essential fatty acids, restored creatinine clearance, augmented urine volume and prevented body weight loss. The improvement of renal function was accompanied by increased urinary ratios of prostaglandin E/thromboxane B and prostaglandin I/thromboxane B excretions. Light microscopic sections showed that only 40% of the animals demonstrated histological tubular lesions, of minor importance, to their kidneys.Our results suggest that the metabolites of arachidonic acid can play important role in the development of cyclosporine-nephrotoxicity because they increase the levels of thromboxane A and that the enchanced synthesis of prostaglandins (E) and (I) induced by a mixture of n - 6/n - 3 essential fatty acids, could play a beneficial role in the prevention of this renal dysfunction.  相似文献   

12.
Wise H  Wong YH  Jones RL 《Neuro-Signals》2002,11(1):20-28
The enzymatic machinery for the production of prostanoids and the receptors responsible for detecting their presence are widely distributed in the body. One pair of prostanoids, prostacyclin and thromboxane A(2), are particularly important in the control of haemodynamics and haemostasis. Prostacyclin achieves its antiplatelet effect by acting as a physiological antagonist, but displays some selectivity towards thromboxane A(2)-mediated platelet activation, possibly by virtue of the inability of thromboxane A(2) receptors to couple directly to G(i) proteins, and because platelet-derived endoperoxides can act as substrates for prostacyclin synthesis in endothelial cells. At low concentrations, prostaglandin E(2) can synergize with thromboxane A(2) by acting on the EP(3) subtype of prostaglandin E(2) receptor, resulting in opposition to the protective function of prostacyclin. In contrast, high concentrations of prostaglandin E(2) act on the prostacyclin receptor, and possibly the prostaglandin D(2) receptor, to turn off platelet activation. Integration of prostanoid signalling in the vascular system is similarly complex, and interpretation of data is further complicated by the regional distribution of prostanoid receptors in different vascular beds, and the poor selectivity of agonists and antagonists.  相似文献   

13.
Treatment with a platelet-activating factor receptor antagonist, SRI 63-441, inhibited interleukin 1-induced increases in vascular permeability and leukocyte infiltration in the rabbit eye following the intravitreal injection of human interleukin 1-alpha. Treatment with the prostaglandin-synthetase inhibitor, flurbiprofen, or the corticosteroid, prednisolone, resulted in comparable attenuation of the increase in vascular permeability. In contrast to the effect of flurbiprofen, SRI 63-441 did not reduce interleukin 1-induced increases in prostaglandin E2 levels. Combined treatment with the platelet-activating factor antagonist and inhibitors of prostaglandin synthesis nearly prevented interleukin 1-induced increases in vascular permeability or cellular infiltration. These findings suggest a role for platelet-activating factor in interleukin 1-induced inflammation. Platelet-activating factor and prostaglandins may act synergistically as mediators of interleukin 1-induced vascular permeability.  相似文献   

14.
Liver microsomes from pregnant rabbits converted prostaglandins F2 alpha, E1, and E2 to their 20-hydroxy metabolites along with smaller amounts of the corresponding 19-hydroxy compounds. Prostaglandins E1 and E2 were also reduced to prostaglandins F1 alpha and F2 alpha, respectively, and prostaglandin E1 was isomerized to 8-isoprostaglandin E1. The above products were also identified after incubation of prostaglandins with liver microsomes from non-pregnant rabbits. In this case, the yield of 20-hydroxy metabolites was much lower. Thromboxane B2 and a number of prostaglandin F2 alpha analogs were also hydroxylated by lung and liver microsomes from pregnant rabbits. The relative rates of hydroxylation by lung microsomes were: prostaglandin E2 approximately prostaglandin F2 alpha approximately 16,16-dimethylprostaglandin F2 alpha approximately 13,14-didehydroprostaglandin F2 alpha greater than thromboxane B2 greater than 15-methylprostaglandin F2 alpha approximately 17-phenyl-18,19,-20-trinorprostaglandin F2 alpha approximately ent-13,14-didehydro-15-epiprostaglandin F2 alpha. Similar results were obtained with liver microsomes except that thromboxane B2 was a relatively poorer substrate for hydroxylation.  相似文献   

15.
We have utilized ionophores to test whether stimulation of chondrocyte prostaglandin biosynthesis is accompanied by an increase in cyclic nucleotide levels in these cells. Radioimmunoassay of prostaglandin E2, 6-oxo-prostaglandin F1 alpha (the stable metabolite of prostaglandin I2) and prostaglandin F2 alpha showed that synthesis of each was stimulated by the divalent-cation ionophore, A23187 after short-term incubation (1-7 min) in serum-free medium. No stimulation of thromboxane B2 was detected. Two monovalent ionophores, lasalocid and monensin failed to stimulate prostaglandin biosynthesis after short-term incubation. Ionophore A23187-stimulated prostaglandin biosynthesis was variably and partially inhibited by sodium meclofenamate, indomethacin and aspirin, but not by sodium salicylate. Ionophore A23187-stimulated prostaglandin biosynthesis was accompanied by a 7.5-fold increase in cyclic AMP levels after 15 min. Sodium meclofenamate, indomethacin and aspirin which inhibited prostaglandin E2 biosynthesis also reduced cyclic AMP levels. Exogenous prostaglandin E2 (1 microgram/ml) stimulated cyclic AMP biosynthesis, which was not inhibited by aspirin. These results indicated that prostaglandins can be considered as one of the local effectors controlling cyclic AMP production in articular cartilage.  相似文献   

16.
[14C]Arachidonic acid conversion in lung homogenates of 28-day fetuses from control and alloxan-diabetic rabbits was studied. The major metabolites were 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid and prostaglandin E2. Small amounts of 6-ketoprostaglandin F1 alpha, prostaglandin F2 alpha, and thromboxane B2 were also observed. Lung homogenates from fetuses of alloxan-diabetic rabbits convert significantly less [14C]arachidonic acid to prostaglandin E2, whereas all other metabolites were present in similar quantities compared to fetuses of non-diabetic rabbits. These studies suggest that the decreased arachidonic acid conversion to prostaglandin E2 could be partially responsible for the functional delay of lung maturation in offspring of alloxan-diabetic rabbits.  相似文献   

17.
The present studies were designed (1) to examine the pattern of changes in eicosanoid biosynthesis in isolated rat glomeruli, and (2) to correlate these changes with the previously observed alterations in renal perfusion and glomerular filtration rate which occur after uranyl nitrate administration, a model of toxin-induced acute renal failure. In the first part of this study, the in vitro and the in vivo effects of two cyclooxygenase inhibitors were examined for their ability to inhibit rat glomerular eicosanoid biosynthesis. Inhibition of prostaglandin E2 and prostaglandin F2 alpha generation by 1 mM aspirin in vitro was 76 and 82%, respectively. Similar inhibitions of 85 and 72% of biosynthesis of the above-mentioned lipids by 0.1 mM indomethacin were also noted. Intraperitoneal administration of aspirin (150 mg/kg) resulted in a significant inhibition of 88% or greater of prostaglandin E2, prostaglandin F2 alpha, 6-keto-prostaglandin F2 alpha, and thromboxane B2 biosynthesis. These results indicated that the expected alterations produced under in vivo conditions were detectable by in vitro techniques used in this study. 24 h after the administration of uranyl nitrate (25 mg/kg), significant increases in the biosynthesis of prostaglandin E2 (124%) and prostaglandin F2 alpha (88%) were observed when compared to the control values. No significant changes in prostacyclin or thromboxane formation were noted at this time. A further increase in the biosynthesis of prostaglandin E2 (248%), prostaglandin F2 alpha (262%), and a significant increase in prostacyclin (120%), measured as 6-keto-prostaglandin F1 alpha, were noted at 48 h. No changes in thromboxane B2 biosynthesis were noted. It is concluded that these data are consistent with the hypothesis that the increased glomerular biosynthesis of vasodilator eicosanoids (i.e., prostaglandin E2 and prostacyclin) may play a significant role in the homeostatic regulation of renal perfusion and glomerular filtration after acute toxic injury to the kidney.  相似文献   

18.
We have identified thromboxane specific receptors in membrane preparations of bovine pulmonary artery endothelial cells using a potent thromboxane specific antagonist, [125I]-PTA-OH in a binding assay. The binding was specific and saturable. Neither thromboxane B2, prostaglandin D2 nor prostaglandin F2 alpha displaced the ligand (0.1 nM) at concentrations up to 10 microM. However, binding was displaced by IPTA-OH greater than SQ29548 greater than U46619. In addition, we observed that thromboxane mimetic U46619 significantly lowered the basal production of prostacyclin and also markedly suppressed bradykinin-stimulated prostacyclin released by endothelial cells. We propose that an important biological effect of thromboxane on vascular endothelial cells may be the suppression of prostacyclin production.  相似文献   

19.
Aspirin is one of the oldest drugs and has been purported to have multiple beneficial effects, including prevention of cardiovascular disease and cancer, in addition to its original indication for treatment of inflammation, fever and pain. In cancer chemoprevention studies using animal models, two methods of aspirin administration have been employed: oral gavage and diet. The untested assumption was that exposure and the resultant pharmacological effects are similar for these two administration methods when dosing is normalized on the basis of mg/kg body weight/day. This study examined and compared time-dependent plasma and colon mucosal concentrations of aspirin metabolite salicylate (aspirin concentrations were below level of quantification), plasma thromboxane B(2) concentrations, and colon mucosal prostaglandin E(2) concentration following these two different dosing paradigms in rats. Diet dosing yielded relatively constant plasma and colon salicylate concentration vs. time profiles. On the other hand, oral gavage dosing led to a rapid peak followed by a fast decline in salicylate concentration in both plasma and colon. Nevertheless, the exposure as measured by the area under plasma or colon concentration-time curve of salicylate was linearly related to dose irrespective of the dosing method. Linear relationships were also observed between colon and plasma salicylate areas under the curve and between colon prostaglandin E(2) and plasma thromboxane B(2) areas under the curve. Therefore, more easily accessible plasma salicylate and thromboxane B(2) concentrations were representative of the salicylate exposure and prostaglandin E(2) pharmacodynamic biomarker in the target colon, respectively.  相似文献   

20.
Peritoneal macrophages were elicited by Freund's incomplete adjuvant from adult male and female Fisher 344 rats. The release of prostaglandin E2 and thromboxane B2 from these macrophages was determined by radioimmunoassay. The basal release of these products was the same for males and females. The macrophages of the female rats released, in a dose-dependent manner, significantly more prostaglandin E2 and thromboxane B2 than macrophages from the male, following challenge with either a particulate stimulus, zymosan (25-150 micrograms/ml) or a soluble stimulus, calcium ionophore A23187 (1 X 10(-7) -1 X 10(-6) M). These results may relate to gender differences in immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号