首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The morphology and function of isolated inner (zona fasciculata/reticularis) adrenocortical cells of rats pretreated with ACTH for 3, 6, 9 or 12 days were investigated. ACTH treatment induced a notable time-dependent enhancement in the steroidogenic capacity (corticosterone production) and growth of inner cells. The volumes of cells, mitochondrial compartment, membrane space [the cellular space occupied by smooth endoplasmic reticulum (SER) membranes] and lipid-droplet compartment, as well as the surface area of mitochondrial cristae and SER tubules, were increased in relation to the duration of ACTH pretreatment, and showed a highly significant positive linear correlation with both basal and stimulated corticosterone production. The acute exposure of isolated cells to ACTH provoked a striking lipid-droplet depletion, the extent of which was linearly and positively correlated with stimulated corticosterone secretion. The hypertrophy of the mitochondrial compartment and SER are interpreted as the morphological counterpart of the enhanced steroidogenic capacity of inner adrenocortical cells, inasmuch as the enzymes of steroid synthesis are located in these two organelles, and it is well known that chronic ACTH exposure stimulates the de novo synthesis of many of them in vivo. The rise in the number of lipid droplets, in which cholesterol is stored, is interpreted as being due to the fact that, under chronic ACTH treatment, the processes leading to cholesterol accumulation in adrenocortical cells (exogenous uptake and endogenous synthesis) exceed those of its utilization in basal steroid secretion. Cholesterol accumulated in lipid droplets as a reserve material may be rapidly utilized after acute ACTH exposure to meet the needs of the enhanced steroidogenic capacity of adrenocortical cells.  相似文献   

2.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

3.
Regenerated adrenocortical nodules were obtained by implanting in the musculus gracilis of rats fragments of the capsular tissue of their excised adrenal glands. Five months after operation, transplanted rats showed a slightly elevated blood concentration of adrenocorticotropin (ACTH), a moderately reduced plasma level of corticosterone (PBC) and a very low concentration of circulating aldosterone (PAC). Regenerated nodules were well encapsulated, and from the connective capsule some septa dipped into the parenchyma. Subcapsular-outer (OZ) and inner (IZ) cells were similar to those of the zona fasciculata/zona reticularis (ZF/ZR) of the normal gland; juxta-septal (JZ) cells resembled those of the zona glomerulosa (ZG). Prolonged (14 days) ACTH infusion normalized PBC and caused a conspicuous hypertrophy of transplanted tissue, which was coupled with a marked hypertrophy of ZF/ZR-like OZ and IZ cells and a notable rise in the basal in vitro production of corticosterone. Conversely, ACTH infusion strikingly lowered PAC, reduced the number of ZG-like JZ cells, and decreased both basal and stimulated secretion of 18-hydroxylated steroids by transplants in vitro.  相似文献   

4.
1. The combined actions of ACTH, corticosterone and prolactin (PRL) in the acute regulation of corticosteroidogenesis were investigated using isolated adrenocortical cells from intact and hypophysectomized (hypox) rats (Rattus norvegicus) and from intact male domestic fowl (Gallus gallus domesticus). 2. Exogenous corticosterone suppressed to about 50% ACTH-induced corticosterone production of cells from either species. This suppression, in part, was due to corticosterone degradation. 3. oPRL, in the presence or absence of ACTH, raised corticosterone production of hypox rat cells, but not intact rat and domestic fowl cells. 4. In addition, oPRL counteracted the corticosterone-induced suppression of net ACTH-stimulated corticosterone production of hypox rat and intact domestic fowl cells, but not intact rat cells. 5. The potency of oPRL with domestic fowl cells was 4 times that with hypox rat cells. 6. Furthermore, in domestic fowl cells, the effect of oPRL was Ca2+-dependent.  相似文献   

5.
The aim of the study was to investigate the effect of prolonged ACTH administration on quantitative structural changes of the rat adrenal cortex and on function of its cells with particular emphasis on correlation of the results of biochemical estimations with stereologic parameters. Daily injections of 20 micrograms ACTH (Synacthen, Depot) for 35 days results in a marked enlargement of the cortex due to an increase in the volume of all the zones. This increase depends upon hypertrophy and hyperplasia of parenchymal cells. At day 21 of experiment the number of parenchymal cells markedly decreased if compared with day 14, the lost of cells being observed mainly in the zona reticularis. Prolonged ACTH treatment only insignificantly changed serum corticosterone concentration and--if calculated per mg of adrenal weight--did not change adrenal corticosterone concentration and 11 beta-hydroxylase activity and decreased corticosterone output by adrenal homogenate. If expressed per adrenocortical cell or per pair of glands, ACTH increased corticosterone concentration and 11 beta-hydroxylase activity while the drop in corticosterone output occurred only at days 28 and 35 of experiment. The striking differences in and among various functional parameters depicting adrenal steroidogenesis show for necessity--in case of long-term experiments leading to hypertrophy or atrophy of the gland--of using coupled stereologic and biochemical techniques which better evaluate the cytophysiological state of adrenocortical cells.  相似文献   

6.
The role of end-product glucocorticoids in the regulation of corticosteroidogenesis in isolated adrenocortical cells was investigated. Trypsin-isolated cells from male rat adrenal glands were incubated with or without corticotropin (ACTH) and with or without corticosterone. Endogenous corticosterone production was determined by radioimmunoassay at the end of incubation. Cessation of ACTH-induced corticosterone production was apparent after 2-4 h of incubation. The suppression occurred later with lower cell concentrations. Corticosterone production was partially restored after washing the suppressed cells. Supernatant fluid from suppressed cell suspensions also suppressed steroidogenesis of a fresh population of cells. However, the suppressing property of the supernatant fluid was abolished after the removal of corticosterone by charcoal-dextran treatment, suggesting that corticosterone or other steroids caused the suppression. Exogenous corticosterone induced suppression over a wide range of ACTH concentrations, but did not change the half-maximal steroidogenic concentration of ACTH, indicating that the suppression does not change the sensitivity of the cells to ACTH. Suppression occurred within 30-60 min after corticosterone had been added to the incubation medium either at the start of incubation or while steroidogenesis was in progress. Suppression varied directly with the concentration of exogenous corticosterone. These data indicate that glucocorticoids can directly and acutely suppress corticosteroidogenesis and thus control adrenocortical function in concert with other regulators such as ACTH and Ca2+.  相似文献   

7.
C Guaza  M Zubiaur  J Borrell 《Peptides》1986,7(2):237-240
Two opioid peptides, beta-endorphin and dynorphin1-17 were bioassayed with isolated rat adrenocortical cells. beta-Endorphin increases basal production of corticosterone as well as the adrenal responsiveness to low doses of ACTH, these effects being partially reversed by naloxone. Dynorphin1-17, without affecting basal corticosterone synthesis, increases adrenocortical responsiveness to ACTH; naloxone does not influence this effect. It is suggested that peripheral opioid peptides may participate in the maintenance of the homeostatic balance by modulating adrenal corticosteroidogenesis.  相似文献   

8.
Tissues slices superfused with medium containing no ACTH released only traces of corticosterone. Addition of ACTH to the medium caused the rate of corticosterone release to increase to a maximum about 45 min after the addition of ACTH, after which time it either remained constant or started to wane slightly. The rate of release was affected by tissue thickness; the maximum rate of corticosterone release occurred when the tissue slices were 200 microns. Stimulated adrenocortical cells had large spherical nuclei, numerous mitochondria with tubular cristae, numerous lipid droplets, and a large amount of smooth endoplasmic reticulum. Many cells had an extensive network of microfilaments adjacent to the plasma membrane and some microtubules. Prolonged superfusion caused degenerative changes in some of the cells. Both cytochalasin B and cytochalasin D, dissolved in DMSO before addition to the superfusion medium, inhibited the corticotropic responsiveness in a dose-dependent manner. Control tissue samples superfused with medium containing DMSO, but no ACTH and no cytochalasin, released significantly more corticosterone than corresponding unstimulated samples. Few or no microfilaments were observed in adrenocortical cells after treatment with cytochalasin. Neither colchicine nor vinblastine had any discernible effect on the corticotropic responsiveness. After treatment with colchicine, adrenocortical cells had an ultrastructure characteristic of inner zone stimulated cells except that they were mainly devoid of microtubules.  相似文献   

9.
Summary The morphological counterpart of the well-known age-dependent marked impairment of glucocorticoid secretion of rat adrenals was investigated by use of morphometric techniques. For this purpose 4-, 8-, 16- and 24-month-old rats were studied. Despite the notable lowering of both basal and ACTH-stimulated production of corticosterone by collagenase-dispersed inner adrenocortical cells, ACTH and corticosterone plasma concentrations displayed significant increases with ageing. Zona fasciculata (ZF) and zona reticularis (ZR) showed a notable hypertrophy in aged rats, which was due to rises in both the average volume and number of their parenchymal cells. The hypertrophy of ZF and ZR cells was in turn associated with increase in the volume of the mitochondrial compartment and proliferation of smooth endoplasmic reticulum, i.e., the two organelles involved in steroid-hormone synthesis. All these morphologic changes, conceivably due to the chronic exposure to high levels of circulating ACTH, are interpreted as a response enabling ZF and ZR to compensate for their age-dependent lowering in glucocorticoid secretion. Stereology also demonstrated that ZF and ZR cells underwent a striking age-related lipid-droplet repletion. Lipid droplets are the intracellular stores of cholesterol esters, the obligate precursors of steroid hormones in rats. This finding is in keeping with the contention that the mechanism underlying the age-dependent decline in rat-adrenal glucocorticoid secretion mainly involves impairments of the utilization of intracellular cholesterol previous to its intramitochondrial transformation to pregnenolone.  相似文献   

10.
The aim of this study was to investigate the effects of ACTH, phytoestrogens (genistein, daidzein, biochanin A and coumestrol), and animal estrogens (estradiol and estrone) on corticosterone secretion by isolated adrenocortical cells of the ganders in breeding (April) and nonbreeding seasons (July). ACTH stimulated corticosterone output in the breeding season. In July (photorefractoriness and postbreeding molt) ACTH had no effect on corticosterone production. Coumestrol reduced corticosterone secretion by the cells obtained in nonbreeding season. Other examined phytoestrogens did not affect corticosterone production. Estrogens showed differentiated effects. Estradiol stimulated the corticosterone output in breeding season; estrone inhibited corticosterone release in July. The season can probably affect sensitivity of isolated gander adrenal cells, especially to ACTH. It seems that goose adrenocortical cells, in contrast to the mammalian cells, can be weakly sensitive to phytoestrogens.  相似文献   

11.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

12.
Previous studies from these laboratories have demonstrated the following: (1) that cyclic 3′5′-AMP (c-AMP) phosphodiesterase activity of adrenocortical carcinoma 494 is only 20% of that found in the normal adrenal; (2) that corticosteroido-genesis in the isolated tumor cells is inhibited by ACTH, and (3) that the normal adrenal biosynthetic pathway from pregnenolone to corticosterone is intact but less active in the tumor. The present studies show that both the isolated adrenocortical carcinoma cell and the normal isolated adrenal cell of the rat have the capacity to transform (20S)-20-hydroxycholesterol into deoxycorticosterone and corticosterone. It is, therefore, proposed that the lack of stimulation by ACTH of corticosterone synthesis of the tumor cells cannot be explained by the absence of enzymes cleaving the cholesterol side chain. It is, therefore, postulated that a modified protein kinase may be present in the tumor which is not stimulated by c-AMP.  相似文献   

13.
Isolated adrenocortical cells from White Leghorn chickens (Gallus domesticus) were compared to those from rats (Rattus norvegicus). Cells were prepared from collagenase-dispersed adrenal glands of sexually mature male animals. Corticosterone was measured by radioimmunoassay after incubation for 2 h with steroidogenic agents. Of the four ACTH analogues used, three were 6-17 times more potent with rat cells than with fowl cells (potencies were indicated by half-maximal steroidogenic concentrations). However, 9-tryptophan (O-nitrophenylsulfenyl) ACTH was 8 times more potent with fowl cells than with rat cells, thus suggesting that ACTH receptor differences exist between the two cell types. In addition, cAMP analogues were 10 times more potent with rat cells than with fowl cells suggesting that fowl corticosteroidogenesis is less dependent on cAMP than is rat corticosteroidogenesis. At equal cell concentrations, rat cells secreted 20-40 times more corticosterone than did chicken cells when they were maximally stimulated. Although rat cells converted 8 times more pregnenolone to corticosterone than did fowl cells, the half-maximal steroidogenic concentration for pregnenolone-supported corticosterone synthesis was the same for both cell types (about 5 microM). This suggests that fowl cells have lower steroidogenic enzyme content rather than lower steroidogenic enzyme activity. An unusual feature seen in the isolated fowl adrenocortical cells was an abundance of intracellular filaments.  相似文献   

14.
The inhibitory action of dexamethasone on the adrenal steroidogenic response to ACTH was confirmed by im administration of graded doses (5, 10 and 30 ng) of synthetic beta 1-24 ACTH to young adult male rats which had received dexamethasone (0.1 mg/100 g bw) 4 hr prior to sacrifice. Following this, kinetic studies were performed by measuring plasma corticosterone, adrenocortical cyclic AMP and cyclic GMP before and 4, 12 and 30 min after administration of either 10 or 30 ng of ACTH. These doses were selected because their effects could be either completely or partially inhibited by dexamethasone. In rats without dexamethasone all the doses of ACTH which were checked induced an increase in both corticosterone and cyclic AMP and a decrease in cyclic GMP. With the smallest dose of ACTH the earlier administration of dexamethasone resulted in complete suppression of both the steroidogenic response and the cyclic AMP response. With the largest dose of ACTH both responses were diminished. In dexamethasone-treated rats the decrease in cyclic GMP was significantly less pronounced 4 min after ACTH than it was in non-treated rats. These results support the view that cyclic AMP and cyclic GMP might both be concerned with the mechanism of acute adrenal steroidogenesis.  相似文献   

15.
VIP dose-dependently increased basal, but not submaximally ACTH (10−10 M)-stimulated, aldosterone (ALDO) and corticosterone (B) secretion of dispersed rat capsular and inner adrenocortical cells, respectively. The maximal stimulatory effect (60–70% rise) was obtained with a VIP concentration of 10−8 M. [4-Cl-D-Phe6,Leu17]-VIP, a VIP-receptor antagonist (VIP-A), and corticotropin inhibiting peptide (CIP), an ACTH receptor antagonist (both 10−6 M), completely annulled VIP (10−8M)-evoked rises in basal ALDO and corticosterone secretions. The ACTH (10−10 M)-enhanced (about 5-fold) production of both hormones was completely reversed by CIP (10−6 M) and only partially reduced (about −30%) by VIP-A (10−6 M). The hypothesis is advanced that the weak secretagogue effect of VIP on dispersed rat capsular and inner adrenocortical cells may be due to its positive interaction with ACTH receptors.  相似文献   

16.
Addition of rat or human high density lipoproteins (HDL) or human low density lipoproteins (LDL) to rat adrenocortical cells in vitro was found to enhance steroid production and increase cell cholesterol content. These effects of HDL were not observed in cultured mouse Y-1 adrenal cells, suggesting that rat adrenal cells possess a specific mechanism for uptake of HDL cholesterol not found in Y-1 cells. The effects of HDL were most marked on cells previously stimulated with adrenocorticotropin (ACTH) and depleted of their endogenous cholesterol stores. Such cells were prepared either by treatment in vivo with 4-aminopyrazolopyrimidine or in vitro with ACTH (10(-7) M) in lipoprotein-poor media. Steroid production by treated cells exhibited a saturable dependence on media HDL concentration. In addition to enhancing ACTH stimulated steroid production, addition of HDL also resulted in a saturable concentration-dependent increase in cell cholesterol content. Both aminoglutethimide and cycloheximide were found to inhibit HDL-enhanced steroid production. Finally, addition of HDL to short term incubations (5 1/2 h) of ACTH-treated cells caused no change in the rate of incorporation of 14C-acetate into cholesterol or corticosterone. These results indicate that rat adrenocortical cells possess a specific, saturable, ACTH-dependent mechanism for uptake of HDL cholesterol. Moreover, cellular uptake of HDL cholesterol exceeded by at least 4-fold the amount of cholesterol associated with HDL apoprotein degraded by the cells, suggesting that utilization of HDL cholesterol does not require endocytosis and lysosomal degradation of the entire HDL particle.  相似文献   

17.
A perifusion system using a plastic column into which isolated rat adrenal cells had been installed was attempted. After ACTH or cAMP was administered to the column, the corticosterone concentration in the eluate was determined. ACTH in 10(-13) and 10(-12) M did not promote corticosterone production, whereas 10(-11) and 10(-10) M showed a dose dependent production of corticosterone. By iterative infusion of 10(-11) or 10(-9) M of ACTH, very clear responses to restimulation of ACTH were noted. Following the administrations of 10(-3) or 10(-2) M of dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP), the production of corticosterone increased dose-dependently. These results suggest that this perifusion system is effective for examining the effects of ACTH or cAMP on steroidogenesis of cells.  相似文献   

18.
Summary To define the role of endogenously synthesized cholesterol in the differentiation of adrenocortical cells in primary culture, fetal rat adrenal cells were cultured in the presence of exogenous cholesterol (serum-supplemented medium) or in the absence of it (serum-free medium or lipoprotein-free medium). Ultrastructurally the cells had features of glomerulosa cells: mitochondria were oval or rod shaped with lamellar inner membranes. The amount of smooth endoplasmic reticulum was small, and lipid droplets were few. When the cells were cultured in serum-free medium some intracytoplasmic vacuoles were seen. The undifferentiated zona glomerulosa-like cells secreted low amounts of corticosterone and 18-OH-deoxycorticosterone (18-OH-DOC) in all three media (serum-supplemented medium, serum-free medium, and lipoprotein-free medium). Stimulation of the adrenocortical cells with ACTH induced the ultrastructural features of differentiated zona fasciculata-like cells. Mitochondrial inner membranes were well developed in lipoprotein-free medium, but not in serum-free medium. The amount of intracellular lipids was increased in both media devoid of cholesterol. In the ACTH stimulated cultures the presence of exogenous cholesterol resulted in increased secretions of corticosterone and 18-OH-DOC. In the absence of an exogenous source of cholesterol, the amounts of steroids secreted were only half of that secreted in the presence of serum-supplemented medium. Endogenously synthesized cholesterol is sufficient for the morphologic differentiation of fetal rat adrenocortical cells under ACTH stimulation. However, without exogenously provided cholesterol, the steroid production accounts only for half of the maximal output achieved using serum-supplemented medium. This work was supported by Finnish Culture Foundation.  相似文献   

19.
Gastric inhibitory polypeptide (GIP) is a 42-amino acid peptide, belonging to the VIP-secretin-glucagon superfamily, some members of this group are able to regulate adrenocortical function. GIP-receptor mRNA has been detected in the rat adrenal cortex, but investigations on the effect of GIP on steroid-hormone secretion in this species are lacking. Hence, we have investigated the distribution of GIP binding sites in the rat adrenal gland and the effect of their activation in vivo and in vitro. Autoradiography evidenced abundant [125I]GIP binding sites exclusively in the inner adrenocortical layers, and the computer-assisted densitometric analysis of autoradiograms demonstrated that binding was displaced by cold GIP, but not by either ACTH or the selective ACTH-receptor antagonist corticotropin-inhibiting peptide (CIP). The intraperitoneal (IP) injection of GIP dose-dependently raised corticosterone, but not aldosterone plasma concentration: the maximal effective dose (10 nmol/rat) elicited a twofold increase. GIP did not affect aldosterone and cyclic-AMP release by dispersed zona glomerulosa cells. In contrast, GIP enhanced basal corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells in a concentration-dependent manner, and the maximal effective concentration (10(-7) M) evoked 1.5- and 2.4-fold rises in corticosterone and cyclic-AMP production, respectively. GIP (10(-7) M) did not display any additive or potentiating effect on corticosterone and cyclic-AMP responses to submaximal or maximal effective concentrations of ACTH. The corticosterone secretagogue action of 10(-7) M GIP was abolished by the protein kinase A (PKA) inhibitor H-89 (10(-5)M), and unaffected by CIP (10(-6)M). Collectively, these findings indicate that GIP exerts a moderate but statistically significant stimulatory effect on basal glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase/PKA-dependent signaling pathway.  相似文献   

20.
A bolus IV injection of endothelin-1 (ET-1) (0.5 microgram.kg-1) decreased PRA, without affecting plasma aldosterone (A) concentration. ET-1 exerted a dose-dependent stimulation of basal secretion of A and corticosterone (B) by dispersed zona glomerulosa (ZG) cells, while it did not affect B production by inner adrenocortical cells. ET-1 notably enhanced the secretory response of dispersed ZG cells to a maximal effective concentration of ACTH, but not of either angiotensin II (ANG-II) or potassium. The conclusion is drawn that ET-1 acutely stimulates ZG in rats, by a mechanism probably similar to that underlying the adrenoglomerulotropic actions of ANG-II and potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号