首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by trans-acting mechanisms.  相似文献   

5.
6.
7.
Jiang H  Sun B  Wang W  Zhang Z  Gao F  Shi G  Cui B  Kong X  He Z  Ding X  Kuang Y  Fei J  Sun YJ  Feng Y  Jin Y 《Cell research》2007,17(9):792-803
Parthenogenetic embryonic stem (pES) cells provide a valuable in vitro model system for studying the molecular mechanisms that underlie genomic imprinting. However, the pluripotency of pES cells and the expression profiles of paternally expressed imprinted genes have not been fully explored. In this study, three mouse pES cell lines were established and the differentiation potential of these cells in extended culture was evaluated. The undifferentiated cells had a normal karyotype and homozygous genome, and expressed ES-cell-specific molecular markers. The cells remained undifferentiated after more than 50 passages and exhibited pluripotent differentiation capacity. All three lines of the established ES cells produced teratomas; two lines of ES cells produced chimeras and germline transmission. Furthermore, activation of the paternally expressed imprinted genes Snrpn, U2afl-rsl, Peg3, Impact, Zfp127, Dlkl and Mest in these cells was detected. Some paternally expressed imprinted genes were found to be expressed in the blastocyst stage of parthenogenetically activated embryos in vitro and their expression level increased with extended pES cell culture. Furthermore, our data show that the activation of these paternally expressed imprinted genes in pES cells was associated with a change in the methylation of the related differentially methylated regions. These findings provide direct evidence for the pluripotency of pES cells and demonstrate the association between the DNA methylation pattern and the activa- tion of paternally expressed imprinted genes in pES cells. Thus, the established ES cell lines provide a valuable model for studying epigenetic regulation in mammalian development.  相似文献   

8.
Mammalian DNA polymerase (pol) lambda is a member of the X-family of DNA polymerases and has striking enzymatic and structural similarities to mammalian DNA pol beta. Because pol beta provides two important enzymatic activities for base excision repair (BER), we examined whether pol lambda might also contribute to BER. We used extracts from mouse embryonic fibroblasts representing wild-type and null genotypes for pol beta and pol lambda. In combination with neutralizing antibodies against pol beta and pol lambda, our results show a BER deficiency in the pol lambda -/- cell extract compared with extract from isogenic wild-type cells. In addition, the pol lambda antibody strongly reduced in vitro BER in the pol beta -/- cell extract. These data indicate that pol lambda is able to contribute to BER in mouse fibroblast cell extract.  相似文献   

9.
The accumulation of somatic mutations in mitochondrial DNA (mtDNA) induced by reactive oxygen species (ROS) is regarded as a major contributor to aging and age-related degenerative diseases. ROS have also been shown to facilitate the formation of certain advanced glycation end-products (AGEs) in proteins and DNA and N(2)-carboxyethyl-2'-deoxyguanosine (CEdG) has been identified as a major DNA-bound AGE. Therefore, the influence of mitochondrial ROS on the glycation of mtDNA was investigated in primary embryonic fibroblasts derived from mutant mice (Sod2(-/+)) deficient in the mitochondrial antioxidant enzyme manganese superoxide dismutase. In Sod2(-/+) fibroblasts vs wild-type fibroblasts, the CEdG content of mtDNA was increased from 1.90 ± 1.39 to 17.14 ± 6.60 pg/μg DNA (p<0.001). On the other hand, the CEdG content of nuclear DNA did not differ between Sod2(+/+) and Sod2(-/+) cells. Similarly, cytosolic proteins did not show any difference in advanced glycation end-products or protein carbonyl contents between Sod2(+/+) and Sod2(-/+). Taken together, the data suggest that mitochondrial oxidative stress specifically promotes glycation of mtDNA and does not affect nuclear DNA or cytosolic proteins. Because DNA glycation can change DNA integrity and gene functions, glycation of mtDNA may play an important role in the decline of mitochondrial functions.  相似文献   

10.
Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G1-like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc ?/? and Ku ?/? mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc ?/? cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku ?/? MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both conditions. These observations suggest that DNA-PKcs contributes to the fast and slow repair of DSBs by NHEJ.  相似文献   

11.
The distinguishing sequence characteristics of mouse imprinted genes   总被引:3,自引:0,他引:3  
Sequence comparison analysis has been carried out for 31 imprinted mouse genes and a set of 150 control genes. The imprinted genes were found to be associated with significantly reduced numbers of short interspersed transposable elements (SINEs), in particular SINE Alu repeats. This is similar to recent analyses of human imprinted genes and supports the suggestion that there is either active selection against SINE elements in imprinted regions or a reduced rate of insertion of these elements. The reduction in numbers of SINEs was more consistent in paternally expressed genes, whereas for maternally expressed genes significantly reduced numbers of SINE-B2 elements were coupled with increased numbers of SINE-B4 and SINE-ID elements. Paternally expressed genes were also found to be associated with a lower GC content. Discriminant analysis revealed that the two sub-groups of imprinted genes can be cleanly separated from each other on the basis of their genomic sequence characteristics and that they tend to localize to different genomic compartments. The differences between the sequence characteristics of imprinted and control genes have also enabled us to develop a discriminant function that can be used in a genome-wide screen to identify candidate imprinted genes.  相似文献   

12.
Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI), i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Mouse embryonic fibroblasts (C3H10T1/2) were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN) and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days). For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay), was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response.  相似文献   

13.
Stress-regulated polyubiquitin genes in mammals are expected to be upregulated under oxidative stress conditions. In order to assess gene regulation via the conventional method, the isolation of RNA molecules or the transfection of reporter constructs into cells is frequently required. If the stress response within cells can be monitored in a reversible manner with minimal manipulation, the study of the stress response pathways will become much easier. Herein, we have developed a simple fluorescence plate reader-based assay to monitor the stress responses of polyubiquitin genes in mouse embryonic fibroblasts, in which one allele of the ubiquitin-coding region of the polyubiquitin gene Ubb or Ubc was replaced by the eGFP-puro cassette, thereby placing GFP expression under the control of the endogenous polyubiquitin gene promoter. Using this simple assay, we established that both mammalian polyubiquitin genes are upregulated upon oxidative stress with slightly higher responses from the Ubb promoter. The principal advantage of this assay is that it allows for the monitoring of stress responses of polyubiquitin genes without disrupting cellular growth; this assay can therefore be applied repeatedly to the same cells. Furthermore, by calculating the increase in fluorescence deriving from newly synthesized GFP upon stress, which can be regarded as a bona fide polyubiquitin gene stress response, we were able to determine and directly compare the concentrations of various oxidative stressors that induce the similar cellular stress levels. Therefore, this simple assay may also be employed in the screening of potentially toxic reagents that induce the stress response pathways.  相似文献   

14.
15.
Genomic imprinting is an epigenetic phenomenon unique to mammals that causes some genes to be expressed according to their parental origin. It results in developmental asymmetry in the function of the parental genomes. We describe here a method for the profiling of imprinted genes based on the development of a mouse imprinting microchip containing oligonucleotides corresponding to 493 genes, including most of the known imprinted genes (IG = 63), genes involved in epigenetic processes (EPI = 15), in metabolism (= 147), in obesity (= 10) and in neurotransmission (= 256) and housekeeping reference genes (= 2). This custom oligonucleotide microarray has been constructed to make data analysis and handling more manageable than pangenomic microarrays. As a proof of concept we present the differential expression of these 493 genes in different tissues (liver, placenta, embryo) of C57BL6/J mice fed different diets. Appropriate experimental strategies and statistical tools were defined at each step of the data analysis process with regard to the different sources of constraints. Data were confirmed by expression analyses based on quantitative real-time PCR. These oligochips should make it possible to increase our understanding of the involvement of imprinted genes in the timing of expression programs, tissue by tissue, stage by stage, in response to nutrients, lifestyles and other as yet unknown critical environmental factors in a variety of physiopathological situations, and in animals of different strains, ages and sexes. The use of oligonucleotides makes it possible to expand this microchip to include the increasing number of imprinted genes discovered.  相似文献   

16.
AIM: To investigate the epigenetic states and expression of imprinted genes in five human embryonic stem cell (hESC) lines derived in Taiwan.METHODS: The heterozygous alleles of single nucleotide polymorphisms (SNPs) at imprinted genes were analyzed by sequencing genomic DNAs of hESC lines and the monoallelic expression of the imprinted genes were confirmed by sequencing the cDNAs. The expression profiles of 32 known imprinted genes of five hESC lines were determined using Affymetrix human genome U133 plus 2.0 DNA microarray.RESULTS: The heterozygous alleles of SNPs at seven imprinted genes, IPW, PEG10, NESP55, KCNQ1, ATP10A, TCEB3C and IGF2, were identified and the monoallelic expression of these imprinted genes except IGF2 were confirmed. The IGF2 gene was found to be imprinted in hESC line T2 but partially imprinted in line T3 and not imprinted in line T4 embryoid bodies. Ten imprinted genes, namely GRB10, PEG10, SGCE, MEST, SDHD, SNRPN, SNURF, NDN, IPW and NESP55, were found to be highly expressed in the undifferentiated hESC lines and down-regulated in differentiated derivatives. The UBE3A gene abundantly expressed in undifferentiated hESC lines and further up-regulated in differentiated tissues. The expression levels of other 21 imprinted genes were relatively low in undifferentiated hESC lines and five of these genes (TP73, COPG2, OSBPL5, IGF2 and ATP10A) were found to be up-regulated in differentiated tissues.CONCLUSION: The epigenetic states and expression of imprinted genes in hESC lines should be thoroughly studied after extended culture and upon differentiation in order to understand epigenetic stability in hESC lines before their clinical applications.  相似文献   

17.
Primary mouse embryonic fibroblasts (MEFs) are a popular tool for molecular and cell biology studies. However, when MEFs are grown in vitro under standard tissue culture conditions, they proliferate only for a limited number of population doublings (PD) and eventually undergo cellular senescence. Presently, the molecular mechanisms halting cell cycle progression and establishing cellular senescence under these conditions are unclear. Here, we show that a robust DNA damage response (DDR) is activated when MEFs undergo replicative cellular senescence. Senescent cells accumulate senescence-associated DDR foci (SDFs) containing the activated form of ATM, its phosphorylated substrates and γH2AX. In senescent MEFs, DDR markers do not preferentially accumulate at telomeres, the end of linear chromosomes. It has been observed that proliferation of MEFs is extended if they are cultured at low oxygen tension (3% O2). We observed that under these conditions, DDR is not observed and senescence is not established. Importantly, inactivation of ATM in senescent MEFs allows escape from senescence and progression through the S-phase. Therefore, MEFs undergoing cellular senescence arrest their proliferation due to the activation of a DNA damage checkpoint mediated by ATM kinase. Finally, we observed that spontaneously immortalized proliferating MEFs display markers of an activated DDR, indicating the presence of chromosomal DNA damage in these established cell lines.  相似文献   

18.
Identification and characterisation of imprinted genes in the mouse.   总被引:3,自引:0,他引:3  
Imprinted genes are expressed specifically from one or other parental allele. Over 70 are now known, and about one-half of these are expressed from the paternal allele and one-half from the maternal allele. Most imprinted genes are clustered within imprinting regions of the mouse genome, regions which are associated with abnormal phenotypes when inherited uniparentally. Imprinted genes have been identified from surveys based on differential expression or differential methylation according to parental origin, as well as analyses of candidate genes, mutants and imprinted gene clusters. Many imprinted genes affect growth and development, and more than 25 per cent determine non-coding RNAs that may have a function in controlling imprinted gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号