首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylation dynamics of imprinted genes in mouse germ cells   总被引:20,自引:0,他引:20  
  相似文献   

2.
3.
Jiang H  Sun B  Wang W  Zhang Z  Gao F  Shi G  Cui B  Kong X  He Z  Ding X  Kuang Y  Fei J  Sun YJ  Feng Y  Jin Y 《Cell research》2007,17(9):792-803
Parthenogenetic embryonic stem (pES) cells provide a valuable in vitro model system for studying the molecular mechanisms that underlie genomic imprinting. However, the pluripotency of pES cells and the expression profiles of paternally expressed imprinted genes have not been fully explored. In this study, three mouse pES cell lines were established and the differentiation potential of these cells in extended culture was evaluated. The undifferentiated cells had a normal karyotype and homozygous genome, and expressed ES-cell-specific molecular markers. The cells remained undifferentiated after more than 50 passages and exhibited pluripotent differentiation capacity. All three lines of the established ES cells produced teratomas; two lines of ES cells produced chimeras and germline transmission. Furthermore, activation of the paternally expressed imprinted genes Snrpn, U2afl-rsl, Peg3, Impact, Zfp127, Dlkl and Mest in these cells was detected. Some paternally expressed imprinted genes were found to be expressed in the blastocyst stage of parthenogenetically activated embryos in vitro and their expression level increased with extended pES cell culture. Furthermore, our data show that the activation of these paternally expressed imprinted genes in pES cells was associated with a change in the methylation of the related differentially methylated regions. These findings provide direct evidence for the pluripotency of pES cells and demonstrate the association between the DNA methylation pattern and the activa- tion of paternally expressed imprinted genes in pES cells. Thus, the established ES cell lines provide a valuable model for studying epigenetic regulation in mammalian development.  相似文献   

4.
5.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. Disruption of normal imprinting leads to abnormal embryogenesis, certain inherited diseases, and is associated with various cancers. In the context of screening for the gene(s) responsible for the alteration of phenotype in cyclophilin A knockdown (CypA-KD) P19 cells, we observed a silent paternally expressed gene, Peg3. Treatment of CypA-KD P19 cells with the DNA demethylating agent 5-aza-dC reversed the silencing of Peg3 biallelically. Genomic bisulfite sequencing and methylation-specific PCR revealed DNA hypermethylation in CypA-KD P19 cells, as the normally unmethylated paternal allele acquired methylation that resulted in biallelic methylation of Peg3. Chromatin immunoprecipitation assays indicated a loss of acetylation and a gain of lysine 9 trimethylation in histone 3, as well as enhanced DNA methyltransferase 1 and MBD2 binding on the cytosine-guanine dinucleotide (CpG) islands of Peg3. Our results indicate that DNA hypermethylation on the paternal allele and allele-specific acquisition of histone methylation leads to silencing of Peg3 in CypA-KD P19 cells. This study is the first demonstration of the epigenetic function of CypA in protecting the paternal allele of Peg3 from DNA methylation and inactive histone modifications.  相似文献   

6.
7.
Liu JH  Zhu JQ  Liang XW  Yin S  Ola SI  Hou Y  Chen DY  Schatten H  Sun QY 《Genomics》2008,91(2):121-128
Epigenetic modifications are closely associated with embryo developmental potential. One of the epigenetic modifications thought to be involved in genomic imprinting is DNA methylation. Here we show that the maternally imprinted genes Snrpn and Peg1/Mest were nearly unmethylated or heavily methylated, respectively, in their differentially methylated regions (DMRs) at the two-cell stage in parthenogenetic embryos. However, both genes were gradually de novo methylated, with almost complete methylation of all CpG sites by the morula stage in parthenogenetic embryos. Unexpectedly, another maternally imprinted gene, Peg3, showed distinct dynamics of methylation during preimplantation development of diploid parthenogenetic embryos. Peg3 showed seemingly normal methylation patterns at the two-cell and morula stages, but was also strongly de novo methylated in parthenogenetic blastocysts. In contrast, the paternally imprinted genes H19 and Rasgrf1 showed complete unmethylation of their DMRs at the morula stage in parthenogenetic embryos. These results indicate that diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes and that the aberrantly homogeneous status of methylation imprints may partially account for developmental failure.  相似文献   

8.
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.  相似文献   

9.
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.  相似文献   

10.
Aberrant DNA methylation imprints in aborted bovine clones   总被引:1,自引:0,他引:1  
Genomic imprinting plays a very important role during development and its abnormality may heavily undermine the developmental potential of bovine embryos. Because of limited resources of the cow genome, bovine genomic imprinting, both in normal development and in somatic cell nuclear transfer (SCNT) cloning, is not well documented. DNA methylation is thought to be a major factor for the establishment of genomic imprinting. In our study, we determined the methylation status of differential methylated regions (DMRs) of four imprinted genes in four spontaneously aborted SCNT-cloned fetuses (AF). Firstly, abnormal methylation imprints were observed in each individual to different extents. In particular, Peg3 and MAOA were either seriously demethylated or showed aberrant methylation patterns in four aborted clones we tested, but Xist and Peg10 exhibited relatively better maintained methylation status in AF1 and AF4. Secondly, two aborted fetuses, AF2 and AF3 exhibited severe aberrant methylation imprints of four imprinted genes. Finally, MAOA showed strong heterogeneous methylation patterns of its DMR in normal somatic adult tissue, but largely variable methylation levels and relatively homogeneous methylation patterns in aborted cloned fetuses. Our data indicate that the aborted cloned fetuses exhibited abnormal methylation imprints, to different extent, in aborted clones, which partially account for the higher abortion and developmental abnormalities during bovine cloning.  相似文献   

11.
The imprinted region on mouse distal chromosome 12 covers about 1 Mb and contains at least three paternally expressed genes (Pegs: Peg9/Dlk1, Peg11/Rtl1, and Dio3) and four maternally expressed genes (Megs: Meg3/Gtl2, antiPeg11/antiRlt1, Meg8/Rian, and Meg9/Mirg). Gtl2(lacZ) (Gene trap locus 2) mice have a transgene (TG) insertion 2.3 kb upstream from the Meg3/Gtl2 promoter and show about 40% growth retardation when the TG-inserted allele is paternally derived. Quantitative RT-PCR experiments showed that the expression levels of Pegs in this region were reduced below 50%. These results are consistent with the observed phenotype in Gtl2lacZ mice, because at least two Pegs(Peg9/Dlk1 and Dio3) have growth-promoting effects. The aberrant induction of Megs from silent paternal alleles was also observed in association with changes in the DNA methylation level of a differentially methylated region (DMR) located around Meg3/Gtl2 exon 1. Interestingly, a 60 approximately 80% reduction in all Megs was observed when the TG was maternally derived, although the pups showed no apparent growth or morphological abnormalities. Therefore, the paternal or maternal inheritance of the TG results in the down-regulation in cis of either Pegs or Megs, respectively, suggesting that the TG insertion influences the mechanism regulating the entire imprinted region.  相似文献   

12.
In different eukaryotic model systems, chromatin and gene expression are modulated by post-translational modification of histone tails. In this in vivo study, histone methylation and acetylation are investigated along the imprinted mouse genes Snrpn, Igf2r and U2af1-rs1. These imprinted genes all have a CpG-rich regulatory element at which methylation is present on the maternal allele, and originates from the female germ line. At these 'differentially methylated regions' (DMRs), histone H3 on the paternal allele has lysine-4 methylation and is acetylated. On the maternally inherited allele, in contrast, chromatin is marked by hypermethylation on lysine-9 of H3. Allele-specific patterns of lysine-4 and lysine-9 methylation are also detected at other regions of the imprinted loci. For the DMR at the U2af1-rs1 gene, we establish that the methyl-CpG-binding-domain (MBD) proteins MeCP2, MBD1 and MBD3 are associated with the maternal allele. These data support the hypothesis that MBD protein-associated histone deacetylase/chromatin-remodelling complexes are recruited to the parental allele that has methylated DNA and H3-K9 methylation, and are prevented from binding to the opposite allele by H3 lysine-4 methylation.  相似文献   

13.
Epigenotype switching of imprintable loci in embryonic germ cells   总被引:8,自引:0,他引:8  
 Expression of imprinted genes is dependent on their parental origin. This is reflected in the heritable differential methylation of parental alleles. The gametic imprints are however reversible as they do not endure for more than one generation. To investigate if the epigenetic changes in male and female germ line are similar or not, we derived embryonic germ (EG) cells from primordial germ cells (PGCs) of day 11.5 and 12.5 male and female embryos. The results demonstrate that they have an equivalent epigenotype. First, chimeras made with EG cells derived from both male and female embryos showed comparable fetal overgrowth and skeletal abnormalities, which are similar to but less severe than those induced by androgenetic embryonic stem (ES) cells. Thus, EG cells derived from female embryos resemble androgenetic ES cells more than parthenogenetic cells. Furthermore, the methylation status of both alleles of a number of loci in EG cells was similar to that of the paternal allele in normal somatic cells. Hence, both alleles of Igf2r region 2, Peg1/Mest, Peg3, Nnat were consistently unmethylated in EG cells as well as in the primary embryonic fibroblasts (PEFs) rescued from chimeras. More strikingly, both alleles of p57kip2 that were also unmethylated in EG cells, underwent de novo methylation in PEFs to resemble a paternal allele in somatic cells. The exceptions were the H19 and Igf2 genes that retained the methylation pattern in PEFs as seen in normal somatic tissues. These studies suggest that the initial epigenetic changes in germ cells of male and female embryos are similar. Received: 1 September 1997 / Accepted: 15 October 1997  相似文献   

14.
15.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

16.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

17.
18.
The mechanisms underlying the phenomenon of genomic imprinting remain poorly understood. In one instance, a differentially methylated imprinting control region (ICR) at the H19 locus has been shown to involve a methylation-sensitive chromatin insulator function that apparently partitions the neighboring Igf2 and H19 genes in different expression domains in a parent of origin-dependent manner. It is not known, however, if this mechanism is unique to the Igf2/H19 locus or if insulator function is a common feature in the regulation of imprinted genes. To address this question, we have studied an ICR in the Kcnq1 locus that regulates long range repression on the paternally derived p57Kip2 and Kcnq1 alleles in an imprinting domain that includes Igf2 and H19. We show that this ICR appears to possess a unidirectional chromatin insulator function in somatic cells of both mesodermal and endodermal origins. Moreover, we document that CpG methylation regulates this insulator function suggesting that a methylation-sensitive chromatin insulator is a common theme in the phenomenon of genomic imprinting.  相似文献   

19.
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.  相似文献   

20.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号