首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New normalization methods for cDNA microarray data   总被引:7,自引:0,他引:7  
MOTIVATION: The focus of this paper is on two new normalization methods for cDNA microarrays. After the image analysis has been performed on a microarray and before differentially expressed genes can be detected, some form of normalization must be applied to the microarrays. Normalization removes biases towards one or other of the fluorescent dyes used to label each mRNA sample allowing for proper evaluation of differential gene expression. RESULTS: The two normalization methods that we present here build on previously described non-linear normalization techniques. We extend these techniques by firstly introducing a normalization method that deals with smooth spatial trends in intensity across microarrays, an important issue that must be dealt with. Secondly we deal with normalization of a new type of cDNA microarray experiment that is coming into prevalence, the small scale specialty or 'boutique' array, where large proportions of the genes on the microarrays are expected to be highly differentially expressed. AVAILABILITY: The normalization methods described in this paper are available via http://www.pi.csiro.au/gena/ in a software suite called tRMA: tools for R Microarray Analysis upon request of the authors. Images and data used in this paper are also available via the same link.  相似文献   

2.
Normalizing DNA microarray data   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
高通量的基因型分析和芯片技术的发展使人们能够进一步研究哪些遗传差异最终影响基因的表达。通过表达数量性状座位(eQTL)作图方法可对基因表达水平的遗传基础进行解析。与传统的QTL分析方法一样, eQTL的主要目标是鉴别表达性状座位所在的染色体区域。但由于表达谱数据成千上万, 而传统的QTL分析方法最多分析几十个性状, 因此需要考虑这类实验设计的特点以及统计分析方法。本文详细介绍了eQTL定位过程及其研究方法, 重点从个体选择、基因芯片实验设计、基因表达数据的获得与标准化、作图方法及结果分析等方面进行了综述, 指出了当前eQTL研究存在的问题和局限性。最后介绍了eQTL研究在估计基因表达遗传率、挖掘候选基因、构建基因调控网络、理解基因间及基因与环境的互作的应用进展。  相似文献   

5.

Background  

The quality of microarray data can seriously affect the accuracy of downstream analyses. In order to reduce variability and enhance signal reproducibility in these data, many normalization methods have been proposed and evaluated, most of which are for data obtained from cDNA microarrays and Affymetrix GeneChips. CodeLink Bioarrays are a newly emerged, single-color oligonucleotide microarray platform. To date, there are no reported studies that evaluate normalization methods for CodeLink Bioarrays.  相似文献   

6.
Kepler TB  Crosby L  Morgan KT 《Genome biology》2002,3(7):research0037.1-research003712

Background  

With the advent of DNA hybridization microarrays comes the remarkable ability, in principle, to simultaneously monitor the expression levels of thousands of genes. The quantiative comparison of two or more microarrays can reveal, for example, the distinct patterns of gene expression that define different cellular phenotypes or the genes induced in the cellular response to insult or changing environmental conditions. Normalization of the measured intensities is a prerequisite of such comparisons, and indeed, of any statistical analysis, yet insufficient attention has been paid to its systematic study. The most straightforward normalization techniques in use rest on the implicit assumption of linear response between true expression level and output intensity. We find that these assumptions are not generally met, and that these simple methods can be improved.  相似文献   

7.
We study the effects on clustering quality by different normalization and pre-clustering techniques for a novel mixed-integer nonlinear optimization-based clustering algorithm, the Global Optimum Search with Enhanced Positioning (EP_GOS_Clust). These are important issues to be addressed. DNA microarray experiments are informative tools to elucidate gene regulatory networks. But in order for gene expression levels to be comparable across microarrays, normalization procedures have to be properly undertaken. The aim of pre-clustering is to use an adequate amount of discriminatory characteristics to form rough information profiles, so that data with similar features can be pre-grouped together and outliers deemed insignificant to the clustering process can be removed. Using experimental DNA microarray data from the yeast Saccharomyces Cerevisiae, we study the merits of pre-clustering genes based on distance/correlation comparisons and symbolic representations such as {+, o, -}. As a performance metric, we look at the intra- and inter-cluster error sums, two generic but intuitive measures of clustering quality. We also use publicly available Gene Ontology resources to assess the clusters' level of biological coherence. Our analysis indicates a significant effect by normalization and pre-clustering methods on the clustering results. Hence, the outcome of this study has significance in fine-tuning the EP_GOS_Clust clustering approach.  相似文献   

8.
9.
MOTIVATION: We consider the detection of expressed genes and the comparison of them in different experiments with the high-density oligonucleotide microarrays. The results are summarized as the detection calls and comparison calls, and they should be robust against data outliers over a wide target concentration range. It is also helpful to provide parameters that can be adjusted by the user to balance specificity and sensitivity under various experimental conditions. RESULTS: We present rank-based algorithms for making detection and comparison calls on expression microarrays. The detection call algorithm utilizes the discrimination scores. The comparison call algorithm utilizes intensity differences. Both algorithms are based on Wilcoxon's signed-rank test. Several parameters in the algorithms can be adjusted by the user to alter levels of specificity and sensitivity. The algorithms were developed and analyzed using spiked-in genes arrayed in a Latin square format. In the call process, p-values are calculated to give a confidence level for the pertinent hypotheses. For comparison calls made between two arrays, two primary normalization factors are defined. To overcome the difficulty that constant normalization factors do not fit all probe sets, we perturb these primary normalization factors and make increasing or decreasing calls only if all resulting p-values fall within a defined critical region. Our algorithms also automatically handle scanner saturation.  相似文献   

10.
The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions.  相似文献   

11.
lumi: a pipeline for processing Illumina microarray   总被引:2,自引:0,他引:2  
Illumina microarray is becoming a popular microarray platform. The BeadArray technology from Illumina makes its preprocessing and quality control different from other microarray technologies. Unfortunately, most other analyses have not taken advantage of the unique properties of the BeadArray system, and have just incorporated preprocessing methods originally designed for Affymetrix microarrays. lumi is a Bioconductor package especially designed to process the Illumina microarray data. It includes data input, quality control, variance stabilization, normalization and gene annotation portions. In specific, the lumi package includes a variance-stabilizing transformation (VST) algorithm that takes advantage of the technical replicates available on every Illumina microarray. Different normalization method options and multiple quality control plots are provided in the package. To better annotate the Illumina data, a vendor independent nucleotide universal identifier (nuID) was devised to identify the probes of Illumina microarray. The nuID annotation packages and output of lumi processed results can be easily integrated with other Bioconductor packages to construct a statistical data analysis pipeline for Illumina data. Availability: The lumi Bioconductor package, www.bioconductor.org  相似文献   

12.

Background  

Normalization of gene expression microarrays carrying thousands of genes is based on assumptions that do not hold for diagnostic microarrays carrying only few genes. Thus, applying standard microarray normalization strategies to diagnostic microarrays causes new normalization problems.  相似文献   

13.
Microarray data quality analysis: lessons from the AFGC project   总被引:10,自引:0,他引:10  
Genome-wide expression profiling with DNA microarrays has and will provide a great deal of data to the plant scientific community. However, reliability concerns have required the development data quality tests for common systematic biases. Fortunately, most large-scale systematic biases are detectable and some are correctable by normalization. Technical replication experiments and statistical surveys indicate that these biases vary widely in severity and appearance. As a result, no single normalization or correction method currently available is able to address all the issues. However, careful sequence selection, array design, experimental design and experimental annotation can substantially improve the quality and biological of microarray data. In this review, we discuss these issues with reference to examples from the Arabidopsis Functional Genomics Consortium (AFGC) microarray project.  相似文献   

14.
Genome-wide expression profiling with DNA microarrays has and will provide a great deal of data to the plant scientific community. However, reliability concerns have required the development data quality tests for common systematic biases. Fortunately, most large-scale systematic biases are detectable and some are correctable by normalization. Technical replication experiments and statistical surveys indicate that these biases vary widely in severity and appearance. As a result, no single normalization or correction method currently available is able to address all the issues. However, careful sequence selection, array design, experimental design and experimental annotation can substantially improve the quality and biological of microarray data. In this review, we discuss these issues with reference to examples from the Arabidopsis Functional Genomics Consortium (AFGC) microarray project.  相似文献   

15.
The measurements of coordinated patterns of protein abundance using antibody microarrays could be used to gain insight into disease biology and to probe the use of combinations of proteins for disease classification. The correct use and interpretation of antibody microarray data requires proper normalization of the data, which has not yet been systematically studied. Therefore we undertook a study to determine the optimal normalization of data from antibody microarray profiling of proteins in human serum specimens. Forty-three serum samples collected from patients with pancreatic cancer and from control subjects were probed in triplicate on microarrays containing 48 different antibodies, using a direct labeling, two-color comparative fluorescence detection format. Seven different normalization methods representing major classes of normalization for antibody microarray data were compared by their effects on reproducibility, accuracy, and trends in the data set. Normalization with ELISA-determined concentrations of IgM resulted in the most accurate, reproducible, and reliable data. The other normalization methods were deficient in at least one of the criteria. Multiparametric classification of the samples based on the combined measurement of seven of the proteins demonstrated the potential for increased classification accuracy compared with the use of individual measurements. This study establishes reliable normalization for antibody microarray data, criteria for assessing normalization performance, and the capability of antibody microarrays for serum-protein profiling and multiparametric sample classification.  相似文献   

16.
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.  相似文献   

17.
Normalization of expression levels applied to microarray data can help in reducing measurement error. Different methods, including cyclic loess, quantile normalization and median or mean normalization, have been utilized to normalize microarray data. Although there is considerable literature regarding normalization techniques for mRNA microarray data, there are no publications comparing normalization techniques for microRNA (miRNA) microarray data, which are subject to similar sources of measurement error. In this paper, we compare the performance of cyclic loess, quantile normalization, median normalization and no normalization for a single-color microRNA microarray dataset. We show that the quantile normalization method works best in reducing differences in miRNA expression values for replicate tissue samples. By showing that the total mean squared error are lowest across almost all 36 investigated tissue samples, we are assured that the bias correction provided by quantile normalization is not outweighed by additional error variance that can arise from a more complex normalization method. Furthermore, we show that quantile normalization does not achieve these results by compression of scale.  相似文献   

18.
Here we present a methodology for the normalization of element signal intensities to a mean intensity calculated locally across the surface of a DNA microarray. These methods allow the detection and/or correction of spatially systematic artifacts in microarray data. These include artifacts that can be introduced during the robotic printing, hybridization, washing, or imaging of microarrays. Using array element signal intensities alone, this local mean normalization process can correct for such artifacts because they vary across the surface of the array. The local mean normalization can be usedfor quality control and data correction purposes in the analysis of microarray data. These algorithms assume that array elements are not spatially ordered with regard to sequence or biological function and require that this spatial mapping is identical between the two sets of intensities to be compared. The tool described in this report was developed in the R statistical language and is freely available on the Internet as part of a larger gene expression analysis package. This Web implementation is interactive and user-friendly and allows the easy use of the local mean normalization tool described here, without programming expertise or downloading of additional software.  相似文献   

19.

Background  

DNA microarrays provide data for genome wide patterns of expression between observation classes. Microarray studies often have small samples sizes, however, due to cost constraints or specimen availability. This can lead to poor random error estimates and inaccurate statistical tests of differential expression. We compare the performance of the standard t-test, fold change, and four small n statistical test methods designed to circumvent these problems. We report results of various normalization methods for empirical microarray data and of various random error models for simulated data.  相似文献   

20.
Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC-MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between-group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号