首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Irradiance strongly affects the abundance of stream periphyton communities that in turn influence patterns of instream nutrient uptake. We examined relationships between irradiance and periphyton nutrient uptake taking into account diel and seasonal variation in ambient irradiance. 2. Uptake of dissolved N, P and C by periphyton as areal uptake (U) and demand (Vf) was determined under 11 irradiance levels (0–100% of ambient conditions) using shallow stream‐side experimental channels. Experiments were conducted once per season over one annual cycle with both day and night uptake rates assessed, together with periphyton biomass and autotrophic production rates. 3. No consistent diel variation in areal uptake or demand was detected for the predominant inorganic or total dissolved nutrients even at the highest irradiances. Lack of variation may indicate nutrient limitation, with photosynthetic sequestration and storage of C during the day for subsequent utilisation at night. Alternatively, oxygen consumption by photoautotrophs at night may stimulate compensatory heterotrophic uptake (e.g. denitrification). 4. In all seasons, release of dissolved organic N was detected during the day but to a lesser extent at night. This was not directly related to irradiance levels, indicating that heterotrophic metabolism (e.g. microbial decomposition) contributes to this phenomenon. 5. Areal uptake and demand for the predominant inorganic and total dissolved nutrients increased in response to increasing irradiance in some or all seasons, but rates were typically higher during the spring and summer. Saturation of areal uptake and demand at elevated irradiances was evident during the spring. demand was also saturated at higher irradiances in the summer and autumn. Maximum demand was comparable during spring and summer, but saturation occurred at lower irradiance in summer (24 h average 135–145 μmol m?2 s?1) relative to spring (312–424 μmol m?2 s?1), indicating more efficient nutrient uptake in summer. Higher total periphyton biomass in summer, but comparable autotrophic biomass (chlorophyll a), implies that heterotrophic metabolism may contribute to this greater efficiency. In spring, autotrophic biomass peaked at an irradiance level of 225 μmol m?2 s?1, also suggesting a role for heterotrophic metabolism in demand at higher irradiances. 6. The results of this study show that irradiance levels exert a strong influence on the nature and quantity of instream nutrient uptake with N demand saturated at elevated irradiance levels during the spring, summer and autumn. Our results also suggest that heterotrophic metabolism makes a measurable contribution to instream nutrient uptake even under higher irradiances that favour autotrophic activity.  相似文献   

2.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

3.
Curves relating net photosynthetic rate to irradiance [P(I) curve relation] were estimated and analysed inMercurialis perennis L. plants stemming from three forest (spruce, beech and ash) stands with different tree leaf canopy development and different light regime. The saturating irradiance (Is) reached the highest values in plants of all three stands in spring (spruce forest: 438 W m−2, beech forest: 440 W m−2 and ash forest: 367 W m−2), it declined sharply in the middle of the growing season (283, 285 and 297 W m-2, respectively) and this Is level persisted until autumn. A pronounced dynamics in plants from spruce and beech forests made itself manifest also in the adaptation (Ia) and compensating (Ic) irradiances, respectively. After a sudden decline in summer, values in autumn were close to those of the vernal season. The most pronounced parameter, which optimally expressed the adaptation ofMercurialis perennis to various light conditions, was the photosynthetic efficiency (α) calculated as the slope of the linear part of the curve relating net photosynthetic rate to irradiance. At the time of the highest PN sat. value in course of the growing season (August) (spruce forest: 100, beech forest: 98.7 and ash forest: 85.8 μg CO2 m−2 s−1), RD was in its minimum; in autumn PN sat. reached the lowest values which corresponded to the most intensive RD. It was found thatMercurialis perennis plants stemming from forest stands with different light conditions did not make use equally of the altering light conditions in the course of the growing season. By the underlying analysis of P(I) curves this rhizomatous perennial herb (geophyte) may be characterized as a shade tolerant species.  相似文献   

4.
1. Our goal was to use physiological indicators [photosynthesis–irradiance (P–I) response, nutrient status], population level feedbacks (self‐shading) and ambient environmental conditions (dissolved nutrients, light, temperature) to improve our understanding of the seasonal and spatial population dynamics of Cladophora. 2. Cladophora grew in three distinct phases, rapid growth early in the season (May–July), a mid‐season population collapse (July–August) and autumn re‐growth. Across all sites and dates, mean net maximal photosynthesis [PM (NET)] was 6.9 ± 3.9 mg O2 g DM?1 h?1, and α was 0.055 ± 0.025 mg O2 g DM?1 μm photons?1 m?2. Mean values for critical irradiance (ICR) and the half‐saturation light intensity (IK), were 42.9 ± 32.1 and 189.3 ± 123.8 μm photons?1 m?2 s?1 respectively. 3. At most sites growth was phosphorus‐limited. Values of α were significantly higher at a site influenced by a nutrient enriched river plume, where algal growth was phosphorus‐sufficient. 4. Photoinhibition was not apparent in any of our P–I experiments. Even if photoinhibition had been apparent during in vitro P–I experiments, population level photosynthetic rates in the field would be little affected because intense self‐shading restricts inhibiting irradiances to the upper few mm–cm of the algal canopy. 5. Our physiological (P–I response) experiments contradicted previous assertions that high ambient temperatures, or nutrient deficiency, were primary causes of mid‐summer sloughing. In our study, sloughing occurred simultaneously at nutrient enriched and nutrient deficient sites, at temperatures well below critical values found during in vitro experiments, and our indicator of physiological condition (P–I response) remained unchanged leading up to, or immediately after, the sloughing event. 6. Self‐shading can reduce the convexity of the P–I response within in vitro incubations, even when the amount of algal material is low. Our experiments used 0.08 g DM of algal material that formed clumps c. 1 cm thick. Under these conditions, we estimated negligible (<1%) effects on PM, a 12% reduction in apparent values of α, and 14% and 17% increases in values of the α‐dependent terms ICR and IK, respectively. 7. Our results are consistent with the hypothesis that a population‐level negative feedback (self‐shading) is responsible for sloughing in dense macroalgal beds. Sloughing was probably inevitable once macroalgal bed density and thickness surpassed a critical threshold. Cells towards the base of the bed received insufficient light to maintain metabolic balance, began to decay and weaken, and became increasingly susceptible to physical detachment from shear stress.  相似文献   

5.
  • 1 This laboratory study examined the effect of a gradient of UV‐B radiation (280–320 nm) on photosynthesis and food quality of periphyton, the trophic base of many freshwater benthic communities. Four irradiances of UV‐B (0, 0.6, 1.2, and 2.3 W m‐2) were delivered by UV‐B lamps (313 nm peak irradiance) over a 13‐day period in the first experiment and over a 4‐h period in the second experiment. These irradiances were roughly equivalent to 0, 1, 2, and 4 times the ambient biologically effective (DNA) midsummer, midday UV‐B irradiance in Tennessee.
  • 2 Rates of photosynthesis and photosynthetic pigments were significantly reduced by irradiances greater than ambient during the 13‐day experiment, suggesting that food supply rates to grazers would be depressed by increases in current UV‐B levels. Effects on community structure were minor, but mean diatom cell size decreased at higher UV‐B irradiances.
  • 3 Irradiated periphyton was fed in surplus to juvenile snails (Physella gyrina) in the first experiment as a bioassay for food quality. Snail growth was the same on all four diets, suggesting that UV‐B did not affect food quality. Nitrogen and phosphorus content of the periphyton were not affected by UV‐B, either.
  • 4 Photosynthesis by low‐biomass periphyton in the second experiment was significantly depressed by irradiances above ambient after only 4 h. Photosynthesis by the high biomass periphyton was not significantly affected by UV‐B, suggesting that self‐shading reduced UV‐B effects.
  相似文献   

6.
1. Single‐station diel oxygen curves were used to monitor the oxygen metabolism of an intermittent, forested third‐order stream (Fuirosos) in the Mediterranean area, over a period of 22 months. Ecosystem respiration (ER) and gross primary production (GPP) were estimated and related to organic matter inputs and photosynthetically active radiation (PAR) in order to understand the effect of the riparian forest on stream metabolism. 2. Annual ER was 1690 g O2 m?2 year?1 and annual GPP was 275 g O2 m?2 year?1. Fuirosos was therefore a heterotrophic stream, with P : R ratios averaging 0.16. 3. GPP rates were relatively low, ranging from 0.05 to 1.9 g O2 m?2 day?1. The maximum values of GPP occurred during a few weeks in spring, and ended when the riparian canopy was fully closed. The phenology of the riparian vegetation was an important determinant of light availability, and consequently, of GPP. 4. On a daily scale, light and temperature were the most important factors governing the shape of photosynthesis–irradiance (P–I) curves. Several patterns could be generalised in the P–I relationships. Hysteresis‐type curves were characteristic of late autumn and winter. Light saturation responses (that occurred at irradiances higher than 90 μE m?2 s?1) were characteristic of early spring. Linear responses occurred during late spring, summer and early autumn when there was no evidence of light saturation. 5. Rates of ER were high when compared with analogous streams, ranging from 0.4 to 32 g O2 m?2 day?1. ER was highest in autumn 2001, when organic matter accumulations on the streambed were extremely high. By contrast, the higher discharge in autumn 2002 prevented these accumulations and caused lower ER. The Mediterranean climate, and in its effect the hydrological regime, were mainly responsible for the temporal variation in benthic organic matter, and consequently of ER.  相似文献   

7.
The effects of shade on benthic calcareous periphyton were tested in a short-hydroperiod oligotrophic subtropical wetland (freshwater Everglades). The experiment was a split-plot design set in three sites with similar environmental characteristics. At each site, eight randomly selected 1-m2 areas were isolated individually in a shade house, which did not spectrally change the incident irradiance but reduced it quantitatively by 0, 30, 50, 60, 70, 80, 90 and 98%. Periphyton mat was sampled monthly under each shade house for a 5 month period while the wetland was flooded. Periphyton was analyzed for thickness, DW, AFDW, chlorophyll a (chl a) and incubated in light and dark BOD bottles at five different irradiances to assess its photosynthesis–irradiance (PI) curve and respiration. The PI curves parameters P max, I k and eventually the photoinhibition slope (β) were determined following non-linear regression analyses. Taxonomic composition and total algal biovolume were determined at the end of the experiment. The periphyton composition did not change with shade but the PI curves were significantly affected by it. I k increased linearly with increasing percent irradiance transmittance (%IT = 1−%shade). P max could be fitted with a PI curve equation as it increased with %IT and leveled off after 10%IT. For each shade level, the PI curve was used to integrate daily photosynthesis for a day of average irradiance. The daily photosynthesis followed a PI curve equation with the same characteristics as P max vs. %IT. Thus, periphyton exhibited a high irradiance plasticity under 0–80% shade but could not keep up the same photosynthetic level at higher shade, causing a decrease in daily GPP at 98% shade levels. The plasticity was linked to an increase in the chl a content per cell in the 60–80% shade, while this increase was not observed at lower shade likely because it was too demanding energetically. Thus, chl a is not a good metric for periphyton biomass assessment across variously shaded habitats. It is also hypothesized that irradiance plasticity is linked to photosynthetic coupling between differently comprised algal layers arranged vertically within periphyton mats that have different PI curves.  相似文献   

8.
Summary The effects of irradiance during growth on biomass allocation, growth rates, leaf chlorophyll and protein contents, and on gas exchange responses to irradiance and CO2 partial pressures of the evergreen, sclerophyllous, chaparral shrub, Ceanothus megacarpus were determined. Plants were grown at 4 irradiances for the growth experiments, 8, 17, 25, 41 nE cm-2 sec-1, and at 2 irradiances, 9 and 50 nE cm-2 sec-1, for the other comparisons.At higher irradiances root/shoot ratios were somewhat greater and specific leaf weights were much greater, while leaf area ratios were much lower and leaf weight ratios were slightly lower than at lower irradiances. Relative growth rates increased with increasing irradiance up to 25 nE cm-2 sec-1 and then leveled off, while unit leaf area rates increased steeply and unit leaf weight rates increased more gradually up to the highest growth irradiance.Leaves grown at 9 nE cm-2 sec-1 had less total chlorophyll per unit leaf area and more per unit leaf weight than those grown at 50 nE cm-2 sec-1. In a reverse of what is commonly found, low irradiance grown leaves had significantly higher chlorophyll a/b than high irradiance grown leaves. High irradiance grown leaves had much more total soluble protein per unit leaf area and per unit dry weight, and they had much higher soluble protein/chlorophyll than low irradiance grown leaves.High irradiance grown leaves had higher rates of respiration in very dim light, required higher irradiances for photosynthetic saturation and had higher irradiance saturated rates of photosynthesis than low irradiance grown leaves. CO2 compensation irradiances for leaves of both treatments were very low, <5 nE cm-2 sec-1. Leaves grown under low and those grown under high irradiances reached 95% of their saturated photosynthetic rates at 65 and 85 nE cm-2 sec-1, respectively. Irradiance saturated rates of photosynthesis were high compared to other chaparral shrubs, 1.3 for low and 1.9 nmol CO2 cm-2 sec-1 for high irradiance grown leaves. A very unusual finding was that leaf conductances to H2O were significantly lower in the high irradiance grown leaves than in the low irradiance grown leaves. This, plus the differences in photosynthetic rates, resulted in higher water use efficiencies by the high irradiance grown leaves. High irradiance grown leaves had higher rates of photosynthesis at any particular intercellular CO2 partial pressure and also responded more steeply to increasing CO2 partial pressure than did low irradiance grown leaves. Leaves from both treatments showed reduced photosynthetic capability after being subjected to low CO2 partial pressures (100 bars) under high irradiances. This treatment was more detrimental to leaves grown under low irradiances.The ecological implications of these findings are discussed in terms of chaparral shrub community structure. We suggest that light availability may be an important determinant of chaparral community structure through its effects on water use efficiencies rather than on net carbon gain.  相似文献   

9.
Responses of photosynthetic rates, determined by oxygen evolution using the light and dark bottles technique, to different temperatures, irradiances, pH, and diurnal rhythm were analyzed under laboratory conditions in four charophyte species (Chara braunii Gmelin, C. guairensis R. Bicudo, Nitella subglomerata A. Braun and Nitella sp.) from lotic habitats in southeastern Brazil. Parameters derived from the photosynthesis versus irradiance curves indicated affinity to low irradiances for all algae tested. Some degree of photoinhibition, [β= ‐(0.30–0.13) mg O2 g?1 dry weight Ir1 (μmol photons m?2 s?1)?1], low light compensation points (Ic= 4–20 μmol photons m?2 s?1) were found for all species analyzed, as well as low values of light saturation parameter (Ik) and saturation (Is) 29–130 and 92–169 μmol photons m?2 s?1, respectively. Photoacclimation was observed in two populations of N. subglomerata collected from sites with different irradiances, consisting of variations in photosynthetic parameters (higher values of a, and lower of Ik and maximum photosynthetic rate, Pmax, in the population under lower irradiance). The highest photosynthetic rates for Chara species were observed at 10–15°C, while for Nitella the highest photosynthetic rate was observed at 20–25°C, despite the lack of significant differences among most levels tested. Rates of dark respiration significantly increase with temperature, with the highest values at 25°C. The results from pH experiments showed highest photosynthetic rates under pH 4.0 for all algae, suggesting higher affinity for inorganic carbon in the form of carbon dioxide, except in one population of N. subglomerata, with similar rates under the three levels, suggesting indistinct use of bicarbonate and carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for most algae tested, which was characterized by two peaks: the first (higher) during the morning (07.00–11.00) and the second (lower) in the afternoon (14.00–17.00). This suggests an endogenous rhythm determining the daily variations in photosynthetic rates.  相似文献   

10.
1. We studied the seasonal dynamics of suspended particulate matter in a turbid, large shallow lake during an annual period (2005–06). We relate the patterns of seston concentration (total suspended solids), phytoplankton biomass and water transparency to the seasonal pattern of incident solar radiation (I0). We also report the seasonal trends of phytoplankton primary production (PP) and photosynthesis photoinhibition due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (Iβ and UV50). 2. We first collected empirical evidence that indicated the conditions of light limitation persisted during the study period. We found that the depth‐averaged irradiance estimated for the time of the day of maximum irradiance (Imean–noon) was always lower than the measured onset of light saturation of photosynthesis (Ik). 3. We then contrasted the observations with theoretical expectations based on a light limitation scenario. The observed temporal patterns of seston concentration, both on a volume and area basis, were significantly explained by I0 (R2 = 0.39 and R2 = 0.37 respectively). The vertical diffuse attenuation coefficient (kdPAR) (R2 = 0.55) and the depth‐averaged irradiance (Imean) (R2 = 0.66), significantly increased with the I0; while the irradiance reaching the lake bottom (Iout) significantly decreased with the incident irradiance (R2 = 0.49). However, phytoplankton biovolume maxima were not coincident with the time of the year of maximum irradiance. 4. A significant positive relationship was observed between PP estimated on an area basis and I0 (R2 = 0.51, P < 0.001). In addition, the parameters describing the photosynthetic responses to high irradiances displayed marked seasonal trends. The photosynthesis photoinhibition due to PAR as well as to UV were significantly related to incident solar radiation (PAR: R2 = 0.73; UV: R2 = 0.74). These results suggest adaptation of the phytoplankton community in response to changes in incident solar radiation.  相似文献   

11.
Mass spectrometric analysis of oxygen uptake and evolution in the light by marine Synechococcus WH7803 indicated that the respiration rate was near zero at low irradiance levels but increased significantly at high irradiances. The light intensity (Ir) at which oxygen uptake began to increase with increasing light intensity depended on the growth irradiance of the culture. In each case, Ir coincided with the minimum light intensity for saturation of carbon assimilation (Ik). At irradiances >Ir, net oxygen evolution rates paralleled carbon assimilation rates. Oxygen uptake at high light intensities was inhibited by DCMU, indicating that oxygen uptake was due to Mehler reaction activity. The onset of Mehler activity at Ik supports the idea that oxygen becomes an alternative sink for electrons from photosystem I when NADPH turnover is limited by the capacity of the dark reactions to utilize reductant.  相似文献   

12.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred.  相似文献   

13.
An eco-physiological simulation model of the growth and development of Avena fatua was parameterised and tested. The model simulates growth ofA. fatua, in kg dry matter ha-1 day-1 from sowing to maturity as a function of irradiance, temperature and various species characteristics. Parameter values were derived from the literature and from field experiments, including both autumn and spring sowings of A. fatua over three years at two sites in southern England. With two exceptions, a single set of parameter values was sufficient to accurately simulate the emergence, growth and development of both autumn and spring cohorts over all years and sites. The two exceptions were the result of differences between autumn and spring cohorts of A. fatua in the rate of early leaf area growth and in the relationship between specific leaf area and developmental stage.  相似文献   

14.
We compared autotrophic growth of the dinoflagellate Karlodinium micrum (Leadbeater et Dodge) and the cryptophyte Storeatula major (Butcher ex Hill) at a range of growth irradiances (Eg). Our goal was to determine the physiological bases for differences in growth–irradiance relationships between these species. Maximum autotrophic growth rates of K. micrum and S. major were 0.5 and 1.5 div.·d?1, respectively. Growth rates were positively correlated with C‐specific photosynthetic performance (PPC, g C·g C?1·h?1) (r2=0.72). Cultures were grouped as light‐limited (LL) and high‐light (HL) treatments to allow interspecific comparisons of physiological properties that underlie the growth–irradiance relationships. Interspecific differences in the C‐specific light absorption rate (EaC, mol photons·g C?1·h?1) were observed only among HL acclimated cultures, and the realized quantum yield of C fixation (φC(real.), mol C·mol photons?1) did not differ significantly between species in either LL or HL treatments. The proportion of fixed C that was incorporated into new biomass was lower in K. micrum than S. major at each Eg, reflecting lower growth efficiency in K. micrum. Photoacclimation to HL in K. micrum involved a significant loss of cellular photosynthetic capacity (Pmaxcell), whereas in S. major, Pmaxcell was significantly higher in HL acclimated cells. We conclude that growth rate differences between K. micrum and S. major under LL conditions relate primarily to cell metabolism processes (i.e. growth efficiency) and that reduced chloroplast function, reflected in PPC and photosynthesis–irradiance curve acclimation in K. micrum, is also important under HL conditions.  相似文献   

15.
16.
Gas exchange in K. blossfeldiana shows a circadian rhythm in net CO2 uptake and transpiration when measured under low and medium irradiances. The period length varies between 21.4 h at 60 W m-2 and 24.0 h at 10 W m-2. In bright light (80 W m-2) or darkness there are no rhythms. High leaf temperatures result in a fast dampening of the CO2-uptake rhythm at moderate irradiances, but low leaf temperatures can not overcome the dampening in bright light. The rhythm in CO2 uptake is accompanied by a less pronounced and more rapidly damped rhythm in transpiration and by oscillations in malate levels with the amplitude being highly reduced. The oscillations in starch content, usually observed to oscillate inversely to the acidification in light-dark cycles, disappear after the first cycle in continuous light. The balance between starch and malate levels depends in continuous light on the irradiance applied. Leaves show high malate and low starch content at low irradiance and high starch and low malate in bright light. During the first 12 h in continuous light replacing the usual dark period, malate synthesis decreases with the increasing irradiance. Up to 50 W m-2 starch content decreases; at higher irradiances it increases above the values usually measured at the end of the light period of the 12:12 h light-dark cycle.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEP phosphoenolpyruvate  相似文献   

17.
18.
Synechococcus sp. (PTCC 6021), a cyanobacterium species, was cultivated in an internally illuminated photobioreactor. The reactor was designed to achieve a monoseptic cultivation of the species. The goal was to study the growth–irradiance behavior of Synechococcus sp. (PTCC 6021). To accomplish this, different initial light irradiances were implemented inside the photobioreactor and the growth of the cells was monitored. It was observed that cell growth increased with higher light intensity until the photoinhibition occurrence at light irradiance higher than 250?μE?m?2?s?1. The maximum OD600, maximum growth rate, and biomass productivity increased, and hence the extinction coefficient decreased, with the increase in light irradiance before photoinhibition. The maximum optical density (OD600) of 5.91 was obtained with irradiance below 250?μE?m?2?s?1 during a growth period of 80 days. The modified Monod function could model the growth–irradiance of cells with satisfactory agreement with the experimental data. The comparison of growth–irradiance of the studied species with other photosynthetic organisms showed the same trend as for cyanobacteria with photoinhibition.  相似文献   

19.
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three‐dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP‐ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m?2 s?1), and high light (1,000 μmol m?2 s?1), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four‐fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M‐BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance.  相似文献   

20.
Eco-physiological responses of nitrogen-fixing cyanobacteria to light   总被引:1,自引:0,他引:1  
The eco-physiological responses of three nitrogen-fixing cyanobacteria (N-fixing cyanobacteria), Aphanizomenon gracile, Anabaena minderi, and Ana. torques-reginae, to light were assessed under nutrient saturation. The N-fixing cyanobacteria were isolated into monocultures from a natural bloom in a shallow colored lake and their growth irradiance parameters and pigment composition were assessed. The different ecological traits related to light use (μmax, α, I k) suggest that these N-fixing cyanobacteria are well adapted to low light conditions at sufficient nutrients, yet interspecific differences were observed. Aphanizomenon gracile and Anabaena minderi had high relative growth rates at low irradiances (ca. 70% of those in high light), low half saturation constant for light-limited growth (I k < 9.09 μmol photon m−2 s−1) and high efficiency (α < 0.11 day−1 μmol photon−1 m2 s). Conversely, Ana. torques-reginae showed poorer light competitiveness: low relative growth rates at low irradiances (ca. 40% of those in high light), low α (0.009 day−1 μmol photon−1 m2 s) and higher I k (35.5 μmol photon m−2 s−1). Final densities in Aphanizomenon gracile and Anabaena minderi reached bloom densities at irradiances above 30 μmol photon m−2 s−1 with different hierarchy depending on irradiance, whereas Ana. torques-reginae never achieved bloom densities. All species had very low densities at irradiances ≤17 μmol photon m−2 s−1, thus no N-fixing blooms would be expected at these irradiances. Also, under prolonged darkness and at lowest irradiance (0 and 3 μmol photon m−2 s−1) akinetes were degraded, suggesting that in ecosystems with permanently dark sediments, the prevalence of N-fixing cyanobacteria should not be favored. All species displayed peaks of phycocyanin, but no phycoeritrin, probably due to the prevailing red light in the ecosystem from which they were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号