首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cyanobacteria possess a differentiated membrane system and transport proteins into both the periplasm and thylakoid lumen. We have used green fluorescent protein (GFP)-tagged constructs to study the Tat protein transporter and Rieske Tat substrates in Synechocystis PCC6803. The Tat system has been shown to operate in the plasma membrane; we show here that it is also relatively abundant in the thylakoid membrane network, indicating that newly synthesized Tat substrates are targeted to both membrane systems. Synechocystis contains three Rieske iron-sulphur proteins, all of which contain typical twin-arginine signal-like sequences at their N-termini. We show that two of these proteins (PetC1 and PetC2) are obligate Tat substrates when expressed in Escherichia coli. The Rieske proteins exhibit differential localization in Synechocystis 6803; PetC1 and PetC2 are located in the thylakoid membrane, while PetC3 is primarily targeted to the plasma membrane. The combined data show that Tat substrates are directed with high precision to both membrane systems in this cyanobacterium, raising the question of how, and when, intracellular sorting to the correct membrane is achieved.  相似文献   

2.
The translocation of proteins to cyanobacterial cell envelope is made complex by the presence of a highly differentiated membrane system. To investigate the protein translocation in cyanobacterium Synechococcus PCC 7942 using the truncated ice nucleation protein (InpNC) from Pseudomonas syringae KCTC 1832, the green fluorescent protein (GFP) was fused in frame to the carboxyl-terminus of InpNC. The fluorescence of GFP was found almost entirely as a halo in the outer regions of cells which appeared to correspond to the periplasm as demonstrated by confocal laser scanning microscopy, however, GFP was not displayed on the outermost cell surface. Western blotting analysis revealed that InpNC-GFP fusion protein was partially degraded. The N-terminal domain of InpNC may be susceptible to protease attack; the remaining C-terminal domain conjugated with GFP lost the ability to direct translocation across outer membrane and to act as a surface display motif. The fluorescence intensity of cells with periplasmic GFP was approximately 6-fold lower than that of cells with cytoplasmic GFP. The successful translocation of the active GFP to the periplasm may provide a potential means to study the property of cyanobacterial periplasmic substances in response to environmental changes in a non-invasive manner.  相似文献   

3.
The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G. violaceus not only shed light on the evolutionary origin and the functional advantages of thylakoid membranes but also might include insights regarding thylakoid formation during chloroplast differentiation. Based on biochemical isolation and direct in vivo characterization, we report here structural and functional domains in the cytoplasmic membrane of a cyanobacterium. Although G. violaceus has no internal membranes, it does have localized domains with apparently specialized functions in its plasma membrane, in which both the photosynthetic and the respiratory complexes are concentrated. These bioenergetic domains can be visualized by confocal microscopy, and they can be isolated by a simple procedure. Proteomic analysis of these domains indicates their physiological function and suggests a protein sorting mechanism via interaction with membrane-intrinsic terpenoids. Based on these results, we propose specialized domains in the plasma membrane as evolutionary precursors of thylakoids.  相似文献   

4.
Multiple sorting pathways operate in chloroplasts to localize proteins to the thylakoid membrane. The signal recognition particle (SRP) pathway in chloroplasts employs the function of a signal recognition particle (cpSRP) to target light harvesting chlorophyll-binding protein (LHCP) to the thylakoid membrane. In assays that reconstitute stroma-dependent LHCP integration in vitro, the stroma is replaceable by the addition of GTP, cpSRP, and an SRP receptor homolog, cpFtsY. Still lacking is an understanding of events that take place at the thylakoid membrane including the identification of membrane proteins that may function at the level of cpFtsY binding or LHCP integration. The identification of Oxa1p in mitochondria, an inner membrane translocase component homologous to predicted proteins in bacteria and to the albino3 (ALB3) protein in thylakoids, led us to investigate the potential role of ALB3 in LHCP integration. Antibody raised against a 50-amino acid region of ALB3 (ALB3-50aa) identified a single 45-kDa thylakoid protein. Treatment of thylakoids with antibody to ALB3-50aa inhibited LHCP integration, whereas the same antibody treatment performed in the presence of antigen reversed the inhibition. In contrast, transport by the thylakoid Sec or Delta pH pathways was unaffected. These data support a model whereby a distinct translocase containing ALB3 is used to integrate LHCP into thylakoid membranes.  相似文献   

5.
Cyanobacteria are unique eubacteria with an organized subcellular compartmentalization of highly differentiated internal thylakoid membranes (TM), in addition to the outer and plasma membranes (PM). This leads to a complicated system for transport and sorting of proteins into the different membranes and compartments. By shotgun and gel-based proteomics of plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803, a large number of membrane proteins were identified. Proteins localized uniquely in each membrane were used as a platform describing a model for cellular membrane organization and protein intermembrane sorting and were analyzed by multivariate sequence analyses to trace potential differences in sequence properties important for insertion and sorting to the correct membrane. Sequence traits in the C-terminal region, but not in the N-terminal nor in any individual transmembrane segments, were discriminatory between the TM and PM classes. The results are consistent with a contact zone between plasma and thylakoid membranes, which may contain short-lived "hemifusion" protein traffic connection assemblies. Insertion of both integral and peripheral membrane proteins is suggested to occur through common translocons in these subdomains, followed by a potential translation arrest and structure-based sorting into the correct membrane compartment.  相似文献   

6.
7.
Yang GX  Liu TL  Zhang H  Wu CQ  Shen DL 《Genetika》2006,42(7):893-897
The human bradykinin B2 receptor (B2R) fused with green fluorescent protein (GFP) at the C-terminal has been expressed in the methylotrophic yeast of Pichia pastoris. In the expression vector, B2R gene was drove under the highly inducible promoter of alcohol oxidase 1 gene of P. pastoris. By fluorescence activated cell sorting (FACS) analysis and western blot analysis, it was proved that B2R recombinant receptor proteins were expressed at high level in the yeast. Further more, the transformants of P. pastoris were monitored with confocal microscopy, a strong green fluorescence was checked out. The recombinant B2R receptor proteins were mainly located on the plasma membrane proved by immunofluorescence microscopy.  相似文献   

8.
We have tested the potential of EGFP, a derivative of the green fluorescent protein (GFP), as a passenger protein for the analysis of protein transport processes across the thylakoid membranes in chloroplasts. In contrast to the majority of fusion proteins commonly used in such studies, EGFP is not of plant origin and can therefore be assumed to behave like a "neutral" passenger protein that is unaffected by any internal plant regulatory circuits. Our in vitro transport experiments clearly demonstrate that EGFP is a suitable passenger protein that can be correctly targeted either to the stroma or to the thylakoid lumen if fused to the appropriate transit peptide. The transport of EGFP across the thylakoid membrane shows, however, a clear pathway preference. While the protein is efficiently targeted by the deltapH/TAT pathway, transport by the Sec pathway is barely detectable, either with isolated thylakoids or with intact chloroplasts. This pathway specificity suggests that EGFP is folded immediately after import into the chloroplast stroma, thus preventing further translocation across the thylakoid membrane by the Sec translocase. The data obtained provide a good basis for the development of molecular tools for transport studies using EGFP as a passenger protein. Furthermore, plant lines expressing corresponding EGFP chimeras are expected to allow in vivo studies on the transport and sorting mechanisms involved in the biogenesis of the chloroplast.  相似文献   

9.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

10.
Exposure of Arabidopsis thaliana plants to high levels of light revealed specific phosphorylation of a 40 kDa protein in photosynthetic thylakoid membranes. The protein was identified by MS as extracellular calcium-sensing receptor (CaS), previously reported to be located in the plasma membrane. By confocal laser scanning microscopy and subcellular fractionation, it was demonstrated that CaS localizes to the chloroplasts and is enriched in stroma thylakoids. The phosphorylation level of CaS responded strongly to light intensity. The light-dependent thylakoid protein kinase STN8 is required for CaS phosphorylation. The phosphorylation site was mapped to the stroma-exposed Thr380, located in a motif for interaction with 14-3-3 proteins and proteins with forkhead-associated domains, which suggests the involvement of CaS in stress responses and signaling pathways. The knockout Arabidopsis lines revealed a significant role for CaS in plant growth and development.  相似文献   

11.
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid.  相似文献   

12.
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.  相似文献   

13.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

14.
The Tat system mediates the transport of folded proteins across the bacterial cytoplasmic membrane. To study the properties of the Escherichia coli Tat-system, we used green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). In the presence of arabinose, low levels of this protein rapidly saturate the translocase and cause the accumulation of inactive, membrane-bound TorA-GFP; fluorescence microscopy also showed active TorA-GFP to be distributed throughout the cytoplasm. However, the efficiency of export can be massively increased by alteration of the growth conditions, and further increased by overexpression of the tatABC genes. Under these conditions, the levels of GFP in the periplasm are raised over 20-fold and the export efficiency nears 100%. These results show that the Tat-system is relatively inactive under some growth conditions and the data suggest that the system may be applicable for the larger-scale export of heterologous proteins.  相似文献   

15.
Routeing of fusion proteins to the thylakoid lumen of the chloroplast was compared in vitro and in vivo. The Escherichia coli protein beta-lactamase was used as a passenger to study this intraorganellar sorting process. The first step, translocation of beta-lactamase into the chloroplast stroma, occurs properly both in vitro and in vivo and is dependent on the presence of a transit peptide in the protein construct. The second step, targeting towards the thylakoid lumen, is more complicated as was also observed previously when other passenger proteins were used. In vitro, the presence of a thylakoid transfer domain is not enough for routeing and proper processing. Only when the complete thylakoid lumen precursor plastocyanin was fused to beta-lactamase was the fusion protein processed adequately, but routeing was still incomplete. However, in vivo, the information present in the thylakoid transfer domain was the only requirement for proper transport towards the thylakoid lumen. These data show that in vivo, the only requirement for targeting of passenger proteins towards the thylakoid lumen is the presence of a transit peptide and a thylakoid transfer domain. Furthermore, we demonstrate that the in vitro import system does not necessarily reflect the in vivo situation with respect to intraorganellar sorting.  相似文献   

16.
Superfolder GFP (sGFP) is a variant of the Green Fluorescent Protein that folds efficiently when fused to poorly folded proteins. In this study, we show that sGFP, but not enhanced GFP, is functional in vivo at 70°C in the extreme thermophile Thermus thermophilus ( Tth ); thus, permitting the use of sGFP as a localization tag in vivo . We created a suite of plasmids that allow the expression of carboxy-terminal sGFP fusion proteins in both Escherichia coli and Tth . In order to demonstrate the facility of sGFP as an in vivo localization tag in Tth , we tagged GroES (the small subunit of the bacterial GroES/GroEL chaperone), NarC (a membrane component of the nitrate respiration apparatus) and PhoA (a TAT-secreted periplasmic protein), and visualized the distribution of the sGFP fusion proteins using confocal microscopy. Fusions to NarC and PhoA produced enzymatically active proteins that complemented both the narC and the phoA strains respectively. Observation of the distribution of the GroES-sGFP protein by confocal microscopy revealed a homogeneous fluorescence in the cells, which is in full agreement with the cytoplasmic nature of GroES, whereas the NarC-sGFP protein was localized to the membrane. Finally, a combination of confocal microscopy and biochemistry revealed that PhoA is localized in the periplasm. We suggest that sGFP will be broadly applicable in characterizing various extreme thermophile systems.  相似文献   

17.
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub‐cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP‐tagged versions of its four FtsH proteases. The ftsH2–gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2–GFP patches represent Photosystem II ‘repair zones’ within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti‐GFP affinity pull‐downs provide the first indication of the composition of the putative repair zones.  相似文献   

18.
Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419).  相似文献   

19.
Surprisingly little is known about the physical environment inside a prokaryotic cell. Knowledge of the rates at which proteins and other cell components can diffuse is crucial for the understanding of a cell as a physical system. There have been numerous measurements of diffusion coefficients in eukaryotic cells by using fluorescence recovery after photobleaching (FRAP) and related techniques. Much less information is available about diffusion coefficients in prokaryotic cells, which differ from eukaryotic cells in a number of significant respects. We have used FRAP to observe the diffusion of green fluorescent protein (GFP) in cells of Escherichia coli elongated by growth in the presence of cephalexin. GFP was expressed in the cytoplasm, exported into the periplasm using the twin-arginine translocation (Tat) system, or fused to an integral plasma membrane protein (TatA). We show that TatA-GFP diffuses in the plasma membrane with a diffusion coefficient comparable to that of a typical eukaryotic membrane protein. A previous report showed a very low rate of protein diffusion in the E. coli periplasm. However, we measured a GFP diffusion coefficient only slightly smaller in the periplasm than that in the cytoplasm, showing that both cell compartments are relatively fluid environments.  相似文献   

20.
Mechanisms of protein import into thylakoids of chloroplasts   总被引:1,自引:0,他引:1  
The thylakoid membrane of chloroplasts contains the major photosynthetic complexes, which consist of several either nuclear or chloroplast encoded subunits. The biogenesis of these thylakoid membrane complexes requires coordinated transport and subsequent assembly of the subunits into functional complexes. Nuclear-encoded thylakoid proteins are first imported into the chloroplast and then directed to the thylakoid using different sorting mechanisms. The cpSec pathway and the cpTat pathway are mainly involved in the transport of lumenal proteins, whereas the spontaneous pathway and the cpSRP pathway are used for the insertion of integral membrane proteins into the thylakoid membrane. While cpSec-, cpTat- and cpSRP-mediated targeting can be classified as 'assisted' mechanisms involving numerous components, 'unassisted' spontaneous insertion does not require additional targeting factors. However, even the assisted pathways differ fundamentally with respect to stromal targeting factors, the composition of the translocase and energy requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号