首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study evaluated the effects of overexpression of wild-type (WT) or phosphatase-deficient (PD) mutant of an osteoclastic protein-tyrosine phosphatase (PTP-oc) in RAW/C4 cells. Osteoclast-like cells derived from WT-PTP-oc overexpressing clones increased, while those derived from PD-PTP-oc expressing clones decreased, their resorption activity. WT-PTP-oc clones had lower apoptosis, lower caspase 3/7 activity, reduced c-Src tyr-527 phosphorylation (PY527) and IkappaBalpha cellular levels, and increased NFkappaB activation and JNK phosphorylation. Overexpression of PD-PTP-oc or PTP-oc siRNA treatment increased apoptosis, caspase 3/7 activity, PY527 and IkappaBalpha levels, and decreased NFkappaB and JNK2 activation. Inhibition of the c-Src kinase blocked the PTP-oc-mediated NFkappaB and JNK2 activation. Blocking the NFkappaB activation had no effect on the JNK2 activation. Inhibiting the NFkappaB and/or JNK2 pathway prevented the PTP-oc-mediated reduction in apoptosis. In conclusion, PTP-oc activates osteoclast activity in part by promoting osteoclast survival through the PTP-oc-mediated c-Src-dependent activation of NFkappaB and JNK2.  相似文献   

2.
To elucidate the possible effect of NFkappaB on radioresistance, we used the osteosarcoma cell line Saos2, stably expressing the NFkappaB constitutive inhibitor, mIkappaB (Saos2-mIkappaB) or stably transfected with the empty vector (Saos2-EV). Ionizing radiation induced "intrinsic" apoptosis in Saos2-mIkappaB cells but not in Saos2-EV control cells, with intact NFkappaB activity. We find as expected, that this NFkappaB activity was enhanced following irradiation in the Saos2-EV control cells. On the other hand, inhibition of NFkappaB signaling in Saos2-mIkappaB cells led to the upregulation of the pro-apoptotic systems, such as Bax protein and c-Jun N-terminal Kinase (JNK)/c-Jun/AP1 signaling. Inhibition of NFkappaB resulted in decreased expression of the DNA damage protein GADD45beta, a known inhibitor of JNK. Subsequently, JNK activation of c-Jun/AP-1 proteins increased radiation-induced apoptosis in these mutants. Radiation-induced apoptosis in Saos2-mIkappaB cells was inhibited by the JNK specific inhibitor SP600125 as well as by Bcl-2 over-expression. Furthermore, release of cytochrome-c from mitochondria was increased and caspase-9 and -3 were activated following irradiation in Saos2-mIkappaB cells. Antisense inhibition of GADD45beta in Saos2-EV cells significantly enhanced apoptosis following irradiation. Our results demonstrate that radioresistance of Saos2 osteosarcoma cells is due to NFkappaB-mediated inhibition of JNK. Our study brings new insight into the mechanisms underlying radiation-induced apoptosis of osteosarcoma, and may lead to development of new therapeutic strategies against osteosarcoma.  相似文献   

3.
4.
It has been proposed that mechanically induced tension is the critical factor in the induction of muscle hypertrophy. However, the molecular mechanisms involved in this process are still under investigation. In the present study, the effect of mechanical stretch on intracellular signaling for protein translation initiation and elongation was studied in C2C12 myoblasts. Cells were grown on a silicone elastomer chamber and subjected to 30-min of 5 or 15% constant static or cyclic (60 cycles/min) uniaxial stretch. Western blot analyses revealed that p70 S6 kinase (p70S6K) and eukaryotic elongation factor 2 (eEF2), which are the markers for translation initiation and peptide chain elongation, respectively, were activated by both static and cyclic stretch. The magnitude of activation was greater in response to the 15% cyclic stretch. Cyclic stretch also increased the phosphorylation of MAP kinases (p38 MAPK, ERK1/2 and JNK). However, the pharmacological inhibition of MAP kinases did not block the stretch-induced activation of p70S6K and eEF2. An inhibitor of the mammalian target of rapamycin (mTOR) blocked the stretch-induced phosphorylation of p70S6K but did not affect the eEF2 activation. A broad-range tyrosine kinase inhibitor, genistein, blocked the stretch-induced activation of p70S6K and eEF2, whereas Src tyrosine kinase and Janus kinase (JAK) inhibitors did not. These results suggest that the stretch-induced activation of protein translation initiation and elongation in mouse myoblast cell lines is mediated by tyrosine kinase(s), except for Src kinase or JAK.  相似文献   

5.
We studied the response of porcine vascular smooth muscle cells (PVSMCs) to cyclic sinusoidal stretch at a frequency of 1 Hz. Cyclic stretch with an area change of 25% caused an increase in PVSMC apoptosis, which was accompanied by sustained activation of c-Jun NH(2)-terminal kinases (JNK) and the mitogen-activated protein kinase p38. Cyclic stretch with an area change of 7% had no such effect. Infection of PVSMCs with recombinant adenoviruses expressing constitutively active forms of upstream molecules that activate JNK and p38 also led to apoptosis. The simultaneous blockade of both JNK and p38 pathways with adenovirus-mediated expression of dominant-negative mutants of c-Jun and p38 caused a significant decrease (to 1/2) of the apoptosis induced by 25% cyclic stretch. The 25% stretch also caused sustained clustering of tumor necrosis factor-alpha (TNF-alpha) receptor-1 and its association with TNF-alpha receptor-associated factor-2 (TRAF-2). Overexpressing the wild-type TRAF-2 in PVSMCs caused an increase in apoptosis. In contrast, the expression of a dominant-negative mutant of TRAF-2 attenuated stretch-induced apoptois. These results support the hypothesis that circumferential overload under hypertensive conditions induces a clustering of death receptors that cause vascular smooth muscle cell apoptosis.  相似文献   

6.
Kaunas R  Usami S  Chien S 《Cellular signalling》2006,18(11):1924-1931
Cyclic mechanical stretch associated with pulsatile blood pressure can modulate cytoskeletal remodeling and intracellular signaling in vascular endothelial cells. The aim of this study was to evaluate the role of stretch-induced actin stress fiber orientation in intracellular signaling involving the activation of c-jun N-terminal kinase (JNK) in bovine aortic endothelial cells. A stretch device was designed with the capability of applying cyclic uniaxial and equibiaxial stretches to cultured endothelial cells, as well as changing the direction of cyclic uniaxial stretch. In response to 10% cyclic equibiaxial stretch, which did not result in stress fiber orientation, JNK activation was elevated for up to 6 h. In response to 10% cyclic uniaxial stretch, JNK activity was only transiently elevated, followed by a return to basal level as the actin stress fibers became oriented perpendicular to the direction of stretch. After the stress fibers had aligned perpendicularly and the JNK activity had subsided, a 90-degree change in the direction of cyclic uniaxial stretch reactivated JNK, and this activation again subsided as stress fibers became re-oriented perpendicular to the new direction of stretch. Disrupting actin filaments with cytochalasin D blocked the stress fiber orientation in response to cyclic uniaxial stretch and it also caused the uniaxial stretch-induced JNK activation to become sustained. These results suggest that stress fiber orientation perpendicular to the direction of stretch provides a mechanism for both structural and biochemical adaptation to cyclic mechanical stretch.  相似文献   

7.
The expression of TRB3 (tribbles 3), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress. How mechanical stress affects the regulation of TRB3 in cardiomyocytes during apoptosis is not fully understood. An in vivo model of aorta-caval shunt in adult rats demonstrated the increased TRB3 protein expression in the myocardium. The tumor necrosis factor-alpha (TNF-α) antagonist etanercept reversed the TRB3 protein expression and cardiomyocyte apoptosis induced by AV shunt. An in vitro model of cyclic stretch in neonatal rats was also used to investigate TRB3 expression. We hypothesized that cardiomyocyte apoptosis induced by cyclic stretch is TRB3 dependent. Neonatal rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles/min. Cyclic stretch significantly increased TRB3 protein and mRNA expression. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, TNF-α antibody and etanercept 30 min before stretch reversed the induction of TRB3 protein induced by stretch. Cyclic stretch induced the DNA-binding activity of growth arrest and DNA damaged inducible gene-153 (GADD153) by electrophoretic mobility shift assay. SP600125, JNK siRNA, TNF-α antibody and etanercept abolished the binding activity induced by stretch. TRB3 promoter activity was enhanced by stretch and TRB3-mut plasmid, SP600125, TNF-α antibody and etanercept attenuated TRB3 promoter activity induced by stretch. Exogenous administration of TNF-α recombinant protein to the non-stretched cardiomyocytes increased TRB3 protein expression similar to that seen after stretch. Cyclic stretch induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA and etanercept. The stretch-induced TRB3 is mediated by TNF-α、JNK and GADD153 pathway. These results indicate that TRB3 plays an important role in stretch-induced cardiomyocyte apoptosis.  相似文献   

8.
The glucocorticoid receptor (GR) has multiple phosphorylation sites that can be activated by MAPKs, which have been previously shown to be activated in response to cyclic stretch in endothelial cells. It is possible therefore that physiological and/or pathological degree of cyclic stretch may also initiate phosphorylation-induced changes in GR subcellular localization as we previously showed with shear stress. However, little is known about the effects of cyclic stretch on glucocorticoid receptor (GR) activity in endothelial cells. We used control and lamin shRNA BAECs and subjected them to ligand (dexamethasone) treatment, physiological stretch (10% at 1 Hz), or pathological stretch (20% at 1 Hz or 10% at 2 Hz), in order to evaluate GR nuclear translocation in endothelial cells with and without lamin A/C as well as potential upstream protein regulators of GR subcellular movement during cyclic stretch. Upon exposure to pathological degrees of stretching, control shRNA BAECs showed greater nuclear concentration of GR at each time point compared to when they were stretched at physiological parameters. The response of GR in lamin-deficient cells to cyclic stretching was relatively non-existent compared to that observed in control shRNA cells. Our results suggest that in cells with lamin A/C, cyclic stretch activates GR through the JNK pathway, and ERK has some inhibitory role on GR nuclear translocation. DUSP proteins become upregulated in response to stretch as a result of GR activation (DUSP1) or by stretch-induced MAPK signaling. In lamin-deficient cells, only the combination of cyclic stretch and p38 inhibition was able to induce marginal nuclear translocation. Increased MAPK phosphorylation due to lamin A/C absence could drive DUSP expression as a negative feedback mechanism. Upregulation of the cytoplasmic DUSP6 suggests a significant role of ERK in reducing GR sensitivity to mechanical strain.  相似文献   

9.
Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of PP2Ac formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells.  相似文献   

10.
11.
12.
Although c-Jun NH(2)-terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-kappaB-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4 degrees C for 4 h followed by reperfusion at 37 degrees C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-kappaB qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-alpha into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation.  相似文献   

13.
14.
VEGF and MMP protein production are both required for exercise-induced capillary growth in skeletal muscle. The underlying process by which muscle activity initiates an angiogenic response is not established, but it is known that mechanical forces such as muscle stretch are involved. We hypothesized that stretch of skeletal muscle microvascular endothelial cells induces production of MMP-2 and VEGF through a common signal pathway. Endothelial cells were grown on Bioflex plates and exposed to 10% static stretch for up to 24 h. MMP-2 protein level was measured by gelatin zymography and VEGF, MMP-2, and MT1-MMP mRNA levels were quantified by real-time quantitative PCR. ERK1/2 and JNK phosphorylation and VEGF protein levels were assessed by Western blotting. Effects of mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK) and reactive oxygen species (ROS) on stretch-induced expression of MMP-2 and VEGF were tested using pharmacological inhibitors. Stretching of endothelial cells for 24 h caused significant increases in MMP-2 protein and mRNA level, but no change in MT1-MMP mRNA. While MMP-2 protein production was enhanced by H(2)O(2) in unstretched cells, ROS inhibition during stretch did not diminish MMP-2 mRNA or protein production. Inhibition of JNK suppressed stretch-induced MMP-2 protein and mRNA, but inhibition of ERK had no effect. In contrast, inhibition of ERK but not JNK attenuated the stretch-induced increase in VEGF mRNA. Our results demonstrate that differential regulation of MMP-2 and VEGF by MAPK signal pathways contribute to stretch-induced activation of microvascular endothelial cells.  相似文献   

15.
We have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In this study, we examined 1,074 prostate biopsies by tissue microarray analysis and demonstrated that PAR1 expression is significantly increased in prostate cancer compared to normal prostate epithelial cells and benign prostatic hyperplasia. We hypothesized that PAR1 activation contributed to prostate cancer cell progression. We demonstrated that stimulation of PAR1 by thrombin or thrombin receptor activating peptide (TRAP6), in androgen-independent DU145 and PC-3 cells resulted in increased DNA binding activity of the NFkappaB p65 subunit. IL-6 and IL-8 levels were also elevated in conditioned media by at least two-fold within 4-6 h of PAR1 activation. This induction of cytokine production was abrogated by pretreatment of cells with the NFkappaB inhibitor caffeic acid phorbol ester. The p38 and ERK1/2 MAPK signaling cascades were also activated by PAR1 stimulation, whereas the SAPK/JNK pathway was unaffected. Inhibition of p38 and ERK1/2 by SB-203589 and PD-098059, respectively, did not abrogate NFkappaB activity, suggesting an independent induction of NFkappaB by PAR1 stimulation. Furthermore, TUNEL assay showed that activation of PAR1 attenuated docetaxel induced apoptosis through the upregulation of the Bcl-2 family protein Bcl-xL. Akt activation was not observed, suggesting that drug resistance induced by PAR1 was independent of PI3K signaling pathway. Because thrombin and PAR1 are over-expressed in prostate cancer patients, targeting the inhibition of their interaction may attenuate NFkappaB signaling transduction resulting in decreased drug resistance and subsequent survival of prostate cancer cells.  相似文献   

16.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

17.
We have studied apoptosis of gastrointestinal epithelial cells by examining the receptor-mediated and DNA damage-induced pathways using TNF-α and camptothecin (CPT), respectively. TNF-α requires inhibition of antiapoptotic protein synthesis by cycloheximide (CHX). CHX also results in high levels of active JNK, which are necessary for TNF-induced apoptosis. While CPT induces apoptosis, the increase in JNK activity was not proportional to the degree of apoptosis. Thus the mechanism of activation of JNK and its role in apoptosis are unclear. We examined the course of JNK activation in response to a combination of TNF-α and CPT (TNF + CPT), which resulted in a three- to fourfold increase in apoptosis compared with CPT alone, indicating an amplification of apoptotic signaling pathways. TNF + CPT caused apoptosis by activating JNK, p38, and caspases-8, -9, and -3. TNF-α stimulated a transient phosphorylation of JNK1/2 and ERK1/2 at 15 min, which returned to basal by 60 min and remained low for 4 h. CPT increased JNK1/2 activity between 3 and 4 h. TNF + CPT caused a sustained and robust JNK1/2 and ERK1/2 phosphorylation by 2 h, which remained high at 4 h, suggesting involvement of MEKK4/7 and MEK1, respectively. When administered with TNF + CPT, SP-600125, a specific inhibitor of MEKK4/7, completely inhibited JNK1/2 and decreased apoptosis. However, administration of SP-600125 at 1 h after TNF + CPT failed to prevent JNK1/2 phosphorylation, and the protective effect of SP-600125 on apoptosis was abolished. These results indicate that the persistent activation of JNK might be due to inhibition of JNK-specific MAPK phosphatase 1 (MKP1). Small interfering RNA-mediated knockdown of MKP1 enhanced TNF + CPT-induced activity of JNK1/2 and caspases-9 and -3. Taken together, these results suggest that MKP1 activity determines the duration of JNK1/2 and p38 activation and, thereby, apoptosis in response to TNF + CPT.  相似文献   

18.
为了证实JNK激酶在骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9) 诱导间充质干细胞C3H10T1/2成骨分化中的作用,利用重组腺病毒将BMP9导入间充质干细胞C3H10T1/2. 通过碱性磷酸酶(ALP)活性测定、钙盐沉积实验、荧光素酶报告基因检测、Western印迹和组织化学染色等方法,检测BMP9是否可经JNK激酶途径调控间充质干细胞C3H10T1/2向成骨分化.动物实验验证在RNA沉默JNK蛋白激酶后,对BMP9诱导间充质干细胞C3H10T1/2向成骨分化的影响.结果发现,BMP9可以增强JNK 激酶的磷酸化;利用JNK抑制剂SP600125抑制JNK激酶活性后,BMP9诱导的间充质干细胞C3H10T1/2的早期成骨指标ALP活性和晚期指标钙盐沉积均受到抑制,而且经典SMAD信号的活化也相应受到抑制;RNA干扰沉默JNK基因表达后,同样也可抑制BMP9 诱导的C3H10T1/2细胞的ALP活性和裸鼠皮下异位成骨.因此表明,BMP9可活化JNK激酶途径从而诱导间充质干细胞C3H10T1/2向成骨分化.  相似文献   

19.
Lee JK  Choi SS  Won JS  Suh HW 《Life sciences》2003,73(5):595-609
The roles of AP-1 and NFkappaB in the regulation of inducible nitric oxide synthase (iNOS) mRNA expression induced by the combination of lipopolysaccharide and tumor necrosis factor-alpha (LT) in C6 cells were examined in the present study. The iNOS mRNA level and NO release were increased by several cytokines alone or combination treatments at 24 hr. LT-induced iNOS mRNA level was maximally increased at 6 hr and maintained at higher level at least up to 24 hr. At 6 hr, iNOS protein level and NO release were also increased by LT. By western blot analysis, AP-1, such as Fra-1, Jun B, and phospho-CREB protein levels were increased by LT and translocation of NFkappaB p52 from the cytoplasm to the nucleus was increased. In addition, phosphorylations of MAPKs (ERK 1/2, p38, JNK 1/2) were increased by LT. LT-induced iNOS mRNA level was inhibited by PD98059 (MEK 1/2 inhibitor), SB203580 (p38 inhibitor), and cycloheximide (a protein synthesis blocker), indicating that the phosphorylation of ERK 1/2 and p38, and on-going protein synthesis are necessary for LT-induced iNOS expression. Electrophoretic mobility shift assay (EMSA) showed that AP-1 and NFkappaB DNA binding activities were increased at 6 hr and these AP-1 and NFkappaB DNA bands increased by LT were super-shifted when Fra-1, Jun B, or NFkappaB p50 antibody was coincubated. These findings strongly suggest that, in C6 cells, Fra-1, Jun B, NFkappaB p50, and NFkappaB p52 appear to be involved in the regulation of iNOS mRNA induced by LT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号