首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of cold soils on stem sap flow, shoot gas exchange and water potential of Picea engelmannii (Parry) was investigated during the snowmelt period in the Medicine Bow Mountains, Wyoming, USA. Shoot net photosynthetic rates were higher in young trees (1.5–1.8 m in height) growing in cold soils (<3.5° C) associated with snowpack, than trees in warm soils until about 1500 h. Higher shoot photosynthetic rates of trees in cold soils continued after snow was removed and could not be completely explained by higher visible irradiance over highly reflective snow. Following soil warming higher photosynthetic rates were evident in these trees for five days. High nutrient availability associated with snowmelt may improve shoot nutrient status leading to higher gas-exchange rates during snowmelt. Shoot conductance to water vapor was higher in trees in cold soil until midday, when declining shoot conductance led to lower intercellular CO2 concentrations. Midday through afternoon shoot water potentials of trees in cold soils were similar or higher than those of trees in warm soils and the lower afternoon shoot conductances in cold soils were not the result of lower bulk shoot water potentials. Decline in net photosynthesis of trees in cold soils at 1500 h paralleled increases in intercellular CO2 concentrations, implying a nonstomatal limitation of photosynthesis. This scenario occurred consistently in mid-afternoon following higher morning and midday photosynthesis in cold soils, suggesting a carbohydrate feedback inhibition of photosynthesis. Diurnal patterns in stem sap flow of all trees (cold and warm soils) reflected patterns of shoot conductance, although changes in stem sap flow lagged 1–3 h behind shoot conductance apparently due to stem water storage. Total daily stem sap flow was similar in trees in cold and warm soils, although diel patterns differed. The morning surge and night-time drop in sap flow commenced 1–2 h earlier in trees in cold soils. Overnight stem sap flow was lower in trees in cold soils, possibly due to higher resistance to root water uptake in cold soils, which may explain lower predawn shoot water potentials. However, midday shoot water potentials of trees in cold soils equalled or exceeded those of trees in warm soils. Higher resistance to root water uptake in P. engelmannii in cold soils was apparently overshadowed by transpirational forces and significant shoot water deficits did not develop.  相似文献   

2.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2002,238(2):175-189
Under the same climatic and edaphic conditions, native savanna vegetation in Brazil, the Cerrado, shows a lower stature and canopy cover than planted Pinus caribaea Morelet forests. To assess the differences in biogeochemical element cycling we compared the nutrient economy of Cerrado and Pinus on three replicate plots of each forest type. The mean nutrient storage in the soil organic layer under Pinus (N: 2630; P: 141; K: 103; Ca: 131; Mg: 20 kg ha–1) was substantially higher than under Cerrado (N: 23; P: 1.2; K: 0.83; Ca: 5.8; Mg: 1.0 kg ha–1) probably because the Pinus roots explored a larger soil volume. The Pinus trees had a higher nutrient-use efficiency as indicated by higher mean litter mass per unit nutrient in litter (N: 108; P: 2290; K: 729; Ca: 1360; Mg: 5420; S: 1190; Fe: 2960; Mn: 9990, Zn: 145000) than the Cerrado trees (N: 94; P: 1810; K: 619; Ca: 302; Mg: 938, S: 746; Fe: 1800; Mn: 7880; Zn: 63700). Mean annual small litterfall collected in 0.25-m2 samplers between May 1997 and April 1999 was 2.1 Mg ha–1 in Cerrado and 7.8 in Pinus. The litterfall rates of the 1–3 week collection intervals correlated negatively with the soil matric potential indicating that litterfall was partly related to water stress. The fluxes of N (73 kg ha–1 year–1), P (3.7), K (11), S (7.0), and Mn (0.83) to the soil with litterfall under Pinus were greater than the litterfall+turnover of the grass/herbs layer under Cerrado (N: 39, P: 2.8, K: 8.6, S: 5.4, Mn: 0.79 kg ha–1 year–1), those of Zn (0.06–0.07) were similar, and those of Ca (Pinus: 5.9/Cerrado: 10), Mg (1.5/4.4), and Fe (2.9/4.0) were smaller. Mean residence times of the organic matter and of all elements were longer in the soil organic layer under Pinus (3.7–26 years in the Oi horizon, 8.1–907 years in the whole organic layer) than under Cerrado (0.22–3.6 years in the Oi horizon, the only organic horizon under Cerrado). Our results demonstrate that the main differences in biogeochemical element cycling between the Pinus forest and the Cerrado consisted of a larger nutrient storage in the organic layer, a higher nutrient-use efficiency, and slower nutrient release rates from the organic layer in the Pinus forest than in the Cerrado. Nutrient cycling as assessed by the nutrient fluxes with litterfall was only partly faster in the Pinus forest than in the Cerrado.  相似文献   

3.
Eucalyptus camaldulensis Dehnh. seedlings inoculated with Pisolithus tinctorius (Pers.) Coker & Couch and Thelephora terrestris Ehrl. per Fr. were grown in well watered soil (s –0.03 MPa) or subjected to a long-term soil water stress of up to –1.0 MPa over 13-week period in a glasshouse. After 13 weeks, all seedling containers were watered to field capacity and then water was withheld from the E. camaldulensis seedlings to induce a short-term drought. Diurnal measurements of seedling photosynthesis rate (A), leaf stomatal conductance (g) and leaf water potential (p) were completed before, during, and after the short term drought. Although they were growing in an equal soil volume, photosynthesis rate (A), leaf stomatal conductance and leaf water potential (p) of larger seedlings with P. tinctorius ectomycorrhizae were similar to those of smaller seedlings colonized with T. terrestris during the short-term drought period. Seedlings inoculated with Pisolithus tinctorius maintained higher photosynthesis rates over the course of the short-term drought. Thus, P. tinctorius ectomycorrhizae appear to be more efficient than those of T. terrestris in assisting seedlings to maintain gas exchange and photosynthesis under limited soil moisture conditions.  相似文献   

4.
Tree regeneration on rotten wood and on soil in old-growth stand   总被引:1,自引:0,他引:1  
Forest regeneration on soil and on decaying wood was studied in natural mixed stand of Facus sylvatica L., Abies alba Mill. and Picea abies Karst. in Babia Góra National Park, Western Carpathians.Downed wood, divided into five decay classes covered around 6% of the forest floor. Among seedlings, Fagus and Abies codominated, while Picea was less numerous. The average seedling density on the soil with herb layer (240 ind./100 m2) was higher than on the logs, even on the strongly decayed ones (177 ind./100 m2). However, the density of Abies and Picea seedlings was higher on the rotten wood than on soil. Seedling survival of all species was better on the logs, especially in conifers. Because of the total dominance of Fagus among saplings, the presence of Abies and Picea in the next generation of canopy trees can strongly depend upon their regeneration on decaying wood.  相似文献   

5.
Natural abundances of nitrogen isotopes, 15N, indicate that, in the same habitat, Alaskan Picea glauca and P. mariana use a different soil nitrogen compartment from the evergreen shrub Vaccinium vitis-idaea or the deciduous grass Calamagrostis canadensis. The very low 15N values (-7.7 ) suggest that (1) Picea mainly uses inorganic nitrogen (probably mainly ammonium) or organic N in fresh litter, (2) Vaccinium (-4.3 ) with its ericoid mycorrhizae uses more stable organic matter, and (3) Calamagrostis (+0.9 ) exploits deeper soil horizons with higher 15N values of soil N. We conclude that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment. The differences among life-forms decrease with increasing N availability. The different levels of 15N are associated with different nitrogen concentrations in leaves, Picea having a lower N concentration (0.62 mmol g–1) than Vaccinium (0.98 mmol g–1) or Calamagrostis (1.33 mmol g–1). An extended vector analysis by Timmer and Armstrong (1987) suggests that N is the most limiting element for Picea in this habitat, causing needle yellowing at N concentrations below 0.5 mmol g–1 or N contents below 2 mmol needle–1. Increasing N supply had an exponential effect on twig and needle growth. Phosphorus, potassium and magnesium are at marginal supply, but no interaction between ammonium supply and needle Mg concentration could be detected. Calcium is in adequate supply on both calcareous and acidic soils. The results are compared with European conditions of excessive N supply from anthropogenic N depositions.Dedicated to Prof. Dr. Drs. h.c. H. Ziegler on the occasion of his 70th birthday  相似文献   

6.
Bramley  Helen  Hutson  John  Tyerman  Steve D. 《Plant and Soil》2003,253(1):275-286
Dieback of riparian species on floodplains has been attributed to increased soil salinisation due to raised groundwater levels, resulting from irrigation and river regulation. This is exacerbated by a reduction in flooding frequency and duration of inundation. For the Chowilla floodplain on the River Murray raised water tables have increased the amount of salts mobilised in the soil profile, causing the trees to experience salt induced water stress. For the trees to survive in the long term, salts need to be leached from the root zone.This study investigated whether floodwater infiltrates through channels created by E. largiflorens (black box) roots, flushing salts away from roots, thereby allowing the trees to increase their water uptake. Trees at different sites on the floodplain were artificially flooded, by pumping 1.5 kL of creek water into impoundments constructed around the trees. Gas exchange parameters, and pre-dawn and midday water potential were measured the day before, the day after and one week after the artificial flood and compared against trees that were not flooded. Pre-dawn and midday water potentials were also measured one month after the flood. After flooding, the trees experienced less water stress, indicated by an increase in water potential of less than 0.2 MPa, in comparison to non-flooded control trees. However, this response was not evident one month after flooding. The response to flooding did not result in increased rates of transpiration, stomatal conductance or photosynthesis, even though flooding effectively doubled the trees yearly water supply.The infiltration of floodwater in the impoundments around E. largiflorens was also compared to that of impoundments on bare ground. Floodwater infiltrated 2 – 17 times faster around trees than on adjacent bare ground, for parts of the floodplain not grazed by livestock. Tracer dye experiments indicated that bulk flow of water through pores down the profile was the reason for the enhanced infiltration. Flooding leached salts in direct vicinity of tree roots, but only leached small amounts of salts from the bulk soil.  相似文献   

7.
Seasonal changes in minimum leaf conductance to water vapor (gmin), an estimate of cuticular conductance, and photosynthetic gas exchange in two co-occurring oak species in north-east Kansas (USA) were examined to determine if leaf gas exchange characteristics correlated with differences in tree distribution. Bur oak (Quercus macrocarpa Michx.) is more abundant in mesic gallery forest sites, whereas chinquapin oak (Quercus muehlenbergii Englm.) is more abundant in xeric sites. Early, during leaf expansion, gmin was significantly lower in chinquapin oak than in bur oak, though midday water potentials were similar. After leaves had fully expanded, gmin decreased to seasonal minimum values of 4.57 (±0.274) mmol m-2 s-1 in bur oak, and 2.66 (±0.156) mmol m-2 s-1 in chinquapin oak. Water potentials at these times were significantly higher in chinquapin oak. As leaves were expanding, photosynthesis (Anet) was significantly higher in chinquapin oak than in bur oak. Later in the growing season, Anet and gleaf increased dramatically in both species, and were significantly higher in bur oak relative to chinquapin oak. We concluded that bur and chinquapin oak have a number of leaf gas exchange characteristics that minimize seasonal water loss. These characteristics are distinct from trees from more mesic sites, and are consistent with the distribution patterns of these trees in tall-grass prairie gallery forests.  相似文献   

8.
Nitrogen mineralization, nitrification potentials, pH, total N, C, extractable P and cations were measured in soils under 4-year-old, mono-specific stands of six fast-growing, native tree species, an abandoned pasture, and a 20-year-old secondary forest, as part of a study on the use of indigenous tree species for rehabilitation of soil fertility on degraded pastures at the La Selva Biological Station in the Atlantic humid lowlands of Costa Rica. Soil net nitrification potential rates were higher under two N-fixing, leguminous species,Stryphnodendron microstachyum Poepp. et Endl. (1.1–1.9 mg kg–1 day–1) andDalbergia tucurensis Donn. Smith (0.7–1.5 mg kg–1 day–1), than under the non-N-fixing trees in the plantation,Vochysia guatemalesis Don. Sm.,Vochysia ferruginea Mart,Dipteryx panamensis (Pittier) Record and Mell andHyeronima alchorneoides Fr. Allemao (0.2–0.8 mg kg–1 day–1). Values under the N-fixing trees were comparable to those found in secondary forest. There were no statistically significant differences in soil total N or in other nurtients between the species. Results of pH measurements done before and after incubation did not show any clear evidence of a pH drop attributable to nitrification.  相似文献   

9.
M. B. Jones 《Oecologia》1987,71(3):355-359
Summary Photosynthesis and transpiration was measured in the large emergent C4 sedge Cyperus papyrus (papyrus) which occupies wide areas of wetland on the African continent. The maximum observed value of net assimilation was 35 mol CO2 m-2 s-1 at full sunlight but light saturation of photosynthesis did not occur. The quantum yield of photosynthesis obtained from the initial slope of the light response curves (0.06 mol mol-1 incident light) was relatively high and close to previously recorded values for some C4 grasses. Measurements made over two days showed that stomatal conductance was sensitive to the ambient air vapour pressure deficit (VPD) and was consistently lower on the day when VPD's were higher. There was, however, no marked midday closure of the stomata. Photosynthesis was also reduced on the day when VPD's were higher. The relationship between net photosynthesis and stomatal conductance was close to linear over the range of measurement conditions, with the result that intercellular CO2 concentrations (C i ) did not vary markedly. There was some evidence that C i decreased at high VPD's. The regulation of stomatal movement in papyrus appears to minimise excessive water loss while not severely limiting photosynthesis. The significance of this strategy for a wetland species with plentiful supplies of water is discussed.  相似文献   

10.
Water use patterns of two species of strangler fig, Ficus pertusa and F. trigonata, growing in a Venezuelan palm savanna were contrasted in terms of growth phase (epiphyte and tree) and season (dry and wet). The study was motivated by the question of how C3 hemiepiphytes accommodate the marked change in rooting environment associated with a life history of epiphytic establishment followed by substantial root development in the soil. During the dry season, stomatal opening in epiphytic plants occurred only during the early morning, maximum stomatal conductances were 5 to 10-fold lower, and midday leaf water potentials were 0.5–0.8 MPa higher (less negative) than in conspecific trees. Watering epiphytes of F. pertusa during the dry season led to stomatal conductances comparable to those exhibited by conspecific trees, but midday leaf water potentials were unchanged. During the rainy season, epiphytes had lower stomatal conductances than conspecific trees, but leaf water potentials were similar between the two growth phases. There were no differences in 13C between the two growth phases for leaves produced in either season. Substrate water availability differed between growth phases; tree roots extended down to the permanent water table, while roots of epiphytic plants were restricted to material accumulated behind the persistent leaf bases of their host palm tree, Copernicia tectorum. Epiphytic substrate moisture contents were variable during both seasons, indicating both the availability of some moisture during the dry season and the possibility of intermittent depletion during the rainy season. Epiphytic strangler figs appear to rely on a combination of strong stomatal control, maintenance of high leaf water potentials, and perhaps some degree of stem water storage to cope with the fluctuating water regime of the epiphytic environment.  相似文献   

11.
We investigated the response of conifer trees in northern Eurasia to climate change and increasing CO2 over the last century by measuring the carbon isotope ratio in tree rings. Samples from Larix, Pinus and Picea trees growing at 26 high‐latitude sites (59–71°N) from Norway to Eastern Siberia were analysed. When comparing the periods 1861–1890 and 1961–1990, the isotope discrimination and the ratio of the intercellular to ambient CO2 concentration (ci/ca) remained constant for trees growing in mild oceanic climate and under extremely cold and dry continental conditions. This shows a strong coordination of gas‐exchange processes, consisting in a biochemical acclimation and a reduction of the stomatal conductance. The correlation for ci/ca between the two investigated periods was particularly strong for Larix (r2=0.90) and Pinus (r2=0.94), but less pronounced for Picea (r2=0.47). Constant ci/ca under increasing CO2 in the atmosphere resulted in improved intrinsic water‐use efficiency (Wi), the amount of water loss at the leaf level per unit carbon gain. We found that 125 out of 126 trees showed increasing Wi from 1861 to 1890 to 1961 to 1990, with an average improvement of 19.2±0.9% (mean±SE). The adaptation in gas exchange and reduced transpiration of trees growing in this region must have had a strong impact on the water and energy budget, resulting in a drier and warmer surface air layer today than would exist without this vegetation–climate feedback.  相似文献   

12.
Cladoptosis, the abscission of twigs, is the main mechanism of changes in crown structure in senescing pedunculate oak (Quercus robur L.). We tested the hypotheses that abscission zones in nodes of old pedunculate oak trees reduce leaf-specific hydraulic conductance of shoots and thereby limit the stomatal conductance and assimilation.Hydraulic conductance and leaf-specific hydraulic conductance, measured with a high pressure flowmeter in 0.5–1.5 m long shoots, were significantly lower in shoots of low vigour compared to vigorous growing shoots in a 165-years-old stand in the southeast of Germany. Two types of bottlenecks to water transport could be identified in shoots of old oak trees, namely nodes and abscission zones. In young twigs, vessel diameter and vessel density in nodes with abscission zones were significantly reduced compared with internodes. In nodes without abscission zones, vessel density was significantly reduced. The reduction of hydraulic conductance was especially severe in the smallest and youngest shoots with diameters less than 2 mm. Internodes of 1–5 mm sapwood diameter had an average hydraulic conductance of 7.13×10−6±0.2×10−6 kg s−1 m−1 MPa−1, compared to 4.54×10−6±0.3×10−6 kg s−1 m−1 MPa−1 in those with nodes.Maximum stomatal conductance and maximum net assimilation rate increased significantly with hydraulic conductance and leaf-specific hydraulic conductance. Maximum rate of net photosynthesis Amax of the most vigorous shoots (VC0) (7.34±0.55 μmol m−2 s−1) was significantly higher (P<0.001) than in shoots of other vigour classes (5.97±0.28 μmol m−2 s−1). Our data support the hypothesis that the changes in shoot and consequently crown architecture that are observed in ageing and declining trees can limit photosynthesis by reducing shoot hydraulic conductance. Abscission zones increase the hydraulic disadvantage of less vigorous compared to vigorously growing twigs. Cladoptosis might serve as a mechanism of selection between twigs of different efficiency.  相似文献   

13.
Rates of photosynthesis vary with foliage age and typically decline from full-leaf expansion until senescence occurs. This age-related decline in photosynthesis is especially important in species that retain foliage for several years, yet it is not known whether the internal conductance to CO2 movement (g i) plays any role. More generally, g i has been measured in only a few conifers and has never been measured in leaves or needles older than 1 year. The effect of ageing on g i was investigated in Pinus pinaster, a species that retains needle for 4 or more years. Measurements were made in autumn when trees were not water limited and after leaf expansion was complete. Rates of net photosynthesis decreased with needle age, from 8 μmol m−2 s−1 in fully expanded current-year needles to 4.4 μmol m−2 s−1 in 3-year-old needles. The relative limitation due to internal conductance (0.24–0.35 out of 1) was in all cases larger than that due to stomatal conductance (0.13–0.19 out of 1). Internal conductance and stomatal conductance approximately scaled with rates of photosynthesis. Hence, there was no difference among year-classes in the relative limitations posed by internal and stomatal conductance or evidence that they cause the age-related decline in photosynthesis. There was little evidence that the age-related decline in photosynthesis was due to decreases in contents of N or Rubisco. The decrease in rates of photosynthesis from current-year to older needles was instead related to a twofold decrease in rates of photosynthesis per unit nitrogen and V cmax/Rubisco (i.e., in vivo specific activity).  相似文献   

14.
The water status of Fagus sylvatica L. and Quercus petraea (Matt) Liebl. was analysed during a cycle of progressive natural drought in southern Europe. Predawn (Ψpd) and midday water potential were measured in transpiring (Ψleaf) and non-transpiring leaves (Ψxyl). Furthermore, photosynthesis (A), stomatal conductance to water vapour (gs) and sap flow (Fd) were recorded on the same dates. Apparent leaf specific hydraulic conductance in the soil–plant–air continuum (Kh) and whole tree hydraulic conductance (Khsf) were calculated by using the simple analogy of the Ohm’s law. Kh was estimated at different points in the pathway as the ratio between transpiration (E) in the uppermost canopy leaves at midday and the gradient of water potential in the different compartments of the continuum soil–roots–stem–branches–leaves. There was a progressive decrease in water potential measured on non-transpiring leaves at the base of tree crown in both species (Ψlxyl) from the beginning of the growing season to the end of summer. A similar decrease was shown in shoot water potential (Ψuxyl) at the uppermost canopy. Predawn water potential (Ψpd) was high in both species until late July (28 July); afterwards, a significant decrease was registered in F. sylvatica and Q. petraea with minimum values of −0.81±0.03 and −0.75±0.06 MPa, respectively, by 15 September. In both species, leaf specific hydraulic conductance in the overall continuum soil–plant–air (Kh) decreased progressively as water stress increases. Minimum values of Kh and Khsf were recorded when Ψpd was lower. However, Q. petraea showed higher Kh than F. sylvatica for the same Ψpd. The decrease in Kh with water stress was mainly linked to its fall from the soil to the lowermost canopy (Ksrs). Nevertheless, a significant resistance in the petiole–leaf lamina (Kpl) was also recorded because significant differences in all dates were found on Ψ between transpiring and non-transpiring leaves from the same shoot. The decline in Kh was followed by an increase in stomatal control of daily water losses through the decrease of stomatal conductance to water vapour (gs) during the day. It promoted a seasonal increase in the stomatal limitation to carbon dioxide uptake for photosynthesis (A). These facts were more relevant in F. sylvatica, which had concurrently a higher decline in water use at the tree level than Q. petraea. The results showed a strong coupling in F. sylvatica and Q. petraea between processes at leaf and tree level. It may be hypothesised a role of specific hydraulic conductance not only in the regulation of water losses by transpiration but also of carbon uptake.  相似文献   

15.
The distribution of labile Cd and Zn in two contrasting soils was investigated using isotopic exchange techniques and chemical extraction procedures. A sewage sludge amended soil from Great Billings (Northampton, UK) and an unamended soil of the Countesswells Association obtained locally (Aberdeen, UK) were used. 114Cd and 67Zn isotopes were added to a water suspension of each soil and the labile metal pool (E-value) determined from the isotope dilution. Samples were obtained at 13 time points from 1h to 50 days. For the sewage sludge amended soil, 29 g Cd g–1 (86% of total) and 806 g Zn g–1 (65% of total) were labile and for the Countesswells soil the value was 8.6 g Zn g–1 (13% of total); limits of detection prevented a Cd E-value from being measured in this soil. The size of the labile metal pool was also measured by growing plants for 90 days and determining the isotopic content of the plant tissue (L-value). Thlaspi caerulescensJ. & C. Presl (alpine penny cress), a hyperaccumulator of Zn and Cd, Taraxacum officinale Weber (dandelion) and Hordeum vulgare L. (spring barley) were used. L-values were similar across species and lower than the E-values. On average the L-values were 23±0.8 g Cd g–1 and 725±14 g Zn g–1 for the Great Billings soil and 0.29±0.16 g Cd g–1 and 7.3±0.3 g Zn g–1 for the Countesswells soil. The extractable metal content of the soils was also quantified by extraction using 0.1 M NaNO3, 0.01 M CaCl2, 0.5 M NaOH, 0.43 M CH3COOH and 0.05 M EDTA at pH 7.0. Between 1.3 and 68% of the total Cd and between 1 and 50% of the total Zn in the Great Billings soil was extracted by these chemicals. For the Countesswells soil, between 6 and 83% of the total Cd and between 0.1 and 7% of the total Zn was extracted. 0.05 M EDTA and 0.43 M CH3COOH yielded the greatest concentrations for both soils but these were less than the isotopic estimates. On the whole, E-values were numerically closer to the L-values than the chemical extraction values. The use of isotopic exchange provides an alternative estimate of the labile metal pool within soils compared to existing chemical extraction procedures. No evidence was obtained that T. caerulescens is able to access metal within the soil not freely available to the other plants species. This has implications for long term remediation strategies using hyperaccumulating plant species, which are unlikely to have any impact on non-labile Cd and Zn in contaminated soil.  相似文献   

16.
黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征   总被引:10,自引:0,他引:10  
章广琦  张萍  陈云明  彭守璋  曹扬 《生态学报》2018,38(4):1328-1336
为阐明不同人工林生态系统间生态化学计量特征的差异,采用野外采样与室内分析相结合的方式分析了陕北黄土丘陵区落叶阔叶树种刺槐和常绿针叶树种油松人工林乔木、灌草、枯落物和土壤(土层深度0—100cm)C、N、P化学计量特征。结果表明:1)刺槐乔木各器官(叶、枝、干、皮、根)C含量显著低于油松,但N和P含量显著高于油松。因此,油松的C∶N和C∶P显著大于刺槐,而N∶P小于刺槐。2)刺槐林下枯落物N和P含量显著高于油松,但C含量显著小于油松。此外,油松林下枯落物C∶N(70.21)大于刺槐林下枯落物C∶N(19.71),说明油松林下枯落物分解较慢,有利于养分的存储。3)刺槐和油松人工林土壤C、N含量均随土壤深度增加而减少,P含量则基本保持不变。刺槐人工林土壤中C含量低于油松,N、P含量在两者之间无显著差异。4)刺槐人工林内乔灌草叶、枯落物与土壤C、N、P及其计量比的相关性多集中在10—20、20—30cm土层,而油松林中各组分与土壤营养元素的相关性相对较小,其中20—30cm土层中无显著相关性,说明相比刺槐人工林而言,油松人工林内土壤层N、P供应量对植物叶片N、P含量影响不显著。本研究为深入了解黄土丘陵区生态系统养分耦合循环机制奠定了基础,同时也为黄土丘陵区的植被恢复工作提供了一定的指导意义。  相似文献   

17.
Young sporophytes of short-stipe ecotype ofEcklonia cavafrom a warmer locality (Tei, Kochi Pref., southern Japan) and those of long-stipe ecotype from a cooler locality (Nabeta, Shizuoka Pref., central Japan) were transplanted in 1995 to artificial reefs immersed at the habitat of long-stipe ecotype in Nabeta Bay, Shizuoka Pref., central Japan. The characteristics of photosynthesis and respiration of bladelets of the transplanted sporophytes of the two ecotypes were compared in winter and summer 1997; the results were assessed per unit area, per unit chlorophyllacontent and per unit dry weight. In photosynthesis-light curves at 10–29 °C, light saturation occurred at 200–400 mol photon m–2s–1in sporophytes from both Tei and Nabeta. The maximum photosynthetic rate (P max) at 10–29 °C and the light-saturation index (I k) at 25–29 °C in sporophytes from both localities were generally higher in winter than in summer.P maxat 25–29 °C (per unit area and chlorophylla) were higher in sporophytes from Tei than those from Nabeta in both seasons. The optimum temperature for photosynthesis was 25 °C in winter and 27 °C in summer at high light intensities of 100–400 mol photon m–2s–1. However, at lower light intensities of 12.5–50 mol photon m–2s–1, it was 20 °C in winter and 25–27 °C in summer for sporophytes from both locations. Dark respiration increased with temperature rise in the range of 10–29 °C in sporophytes from both locations in summer and winter. The sporophytes transplanted from Tei (warmer area) showed higher photosynthetic activities than those from Nabeta (cooler area) at warmer temperatures even under the same environmental conditions. This indicates that these physiological ecotypes have arisen from genetic differentiation.  相似文献   

18.
Light-saturated net photosynthesis (Asat), dark respiration (RD), and foliar nutrient content of eight European Scots pine (Pinus sylvestris L.) provenances were measured at experimental sites in western Poland. Two-year-old seedlings were planted in 1984 at two sites with similar soils in areas of contrasting air pollution. One site was near a point source of SO2 and other pollutants, and another 12 km to the southeast in an area free of acute air pollution was treated as a control. The eight provenances were from a large north-tosouth latitudinal range (60 to 43° N). At the heavily polluted site Scots pine trees exhibited lower growth rates and crown dieback and deformation. Soil pH, Ca and Mg were at least 10 times lower, and Al 10 times higher at the polluted than the control site. In 1991, concentrations of Al, P, Ca, S, Mn, Fe, and Zn in oneyear old Scots pine foliage were higher and Mg lower at the polluted than control site. At both sites foliar Mg levels were within the range considered deficient (0.6 mg g-1), and at the polluted site, Al concentrations were very high (670 to 880 g g-1). In all provenances, RD of one-year-old needles was higher (by 22% on average) and Asat was lower (by 37% on average) at the polluted than the control site. The ratio of Asat: RD was half as great in all provenances at the polluted (4 to 6) than control site (8 to 11). Provenances of southern origin had greater increases in RD and water-use efficiency at the polluted site than other provenances. Within the polluted site alone, or across both sites, Asat in Scots pine was negatively correlated to the Al: Ca ratio (p<0.001, r=–0.93). Across sites RD increased with needle N and Al (multiple regression, p<0.001). The data suggest that at the polluted site there is excessive soil Al and deficient Mg availability, low needle Mg and high Al concentrations and high Al: Ca ratios, and that these have resulted in reduced photosynthetic capacity and increased respiration.  相似文献   

19.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

20.
Water sources of Eucalyptus camaldulensis Dehn. trees were investigated on a semiarid floodplain in south-eastern Australia. The trees investigated ranged in distance from 0.5 to 40 m from a stream, with electrical conductivity 0.8 dSm–1, and grew over groundwater with electrical conductivity ranging from 30 to 50 dSm–1. The sources of water being used by the trees were investigated using the naturally occurring stable isotopes of water and measurements of soil water potential. Xylem water potential and leaf conductance were also examined to identify the trees' response to using these sources of water. Trees at distances greater than about 15 m from the stream used no stream water. The trees used groundwater in summer and a combination of groundwater and rain-derived surface-soil water (0.05–0.15 m depth) in winter. In doing so they suffered water stress at electrical conductivities higher than approximately 40 dSm–1 (equivalent to approximately –1.4 MPa). Trees adjacent to the stream used stream water directly in summer, but may have used stream water from the soil profile in winter, after the stream had risen and recharged the soil water. E. camaldulensis appeared to be partially opportunistic in the sources of water they used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号