首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Habitat exploration and use in dispersing juvenile flying squirrels   总被引:3,自引:0,他引:3  
1. Variation in behaviours involved in habitat selection is important for several evolutionary and ecological processes. For example, habitat use during dispersal may differ from breeding habitat use, and for dispersers the scale of habitat familiarity is determined by exploratory behaviour. We studied habitat use and exploration of 56 radio-collared juvenile flying squirrels Pteromys volans L. within natal home range and during dispersal, and compared habitat use between juveniles and 37 adults within breeding home range. 2. Before dispersal, young flying squirrels actively moved around the natal site. Surprisingly, long-distance dispersers explored less than short-distance dispersers, but philopatric individuals explored similar distances as dispersers. Females explored less than males, although females are the more dispersive sex in flying squirrels. 3. For most of the individuals the settlement area was unfamiliar due to long dispersal distance. Consequently, direction and distance of exploration were not very strong predictors of settlement location. However, individuals familiar with the settlement area concentrated exploration to that area. Exploration did not correlate with short-term survival. 4. Dispersers preferred breeding habitat while dispersing, but were found more often in matrix habitat than juveniles within natal, or adults within breeding, home ranges. 5. We conclude that familiarity does not determine settlement as much as, for example, availability of the habitat for flying squirrels. Based on our results, it also seems clear that data on adult habitat use are not enough to predict habitat use of dispersing individuals. In addition, our results support the recent view that short- and long-distance dispersers may need to be analysed separately in ecological and evolutionary analyses.  相似文献   

2.
The salamander tail displays different functions and morphologies in the aquatic and terrestrial stages of species with complex life cycles. During metamorphosis the function of the tail changes; the larval tail functions in aquatic locomotion while the juvenile and adult tail exhibits tail autotomy and fat storage functions. Because tail injury is common in the aquatic environment, we hypothesized that mechanisms have evolved to prevent altered larval tail morphology from affecting normal juvenile tail morphology. The hypothesis that injury to the larval tail would not affect juvenile tail morphology was investigated by comparing tail development and regeneration in Hemidactylium scutatum (Caudata: Plethodontidae). The experimental design included larvae with uninjured tails and with cut tails to simulate natural predation. The morphological variables analyzed to compare normally developing and regenerating tails were 1) tail length, 2) number of caudal vertebrae, and 3) vertebral centrum length. Control and experimental groups do not differ in time to metamorphosis or snout-vent length. Tails of experimental individuals are shorter than controls, yet they display a significantly higher rate of tail growth and less resorption of tail tissue. Anterior to the site of tail injury, caudal vertebrae in juveniles display greater average centrum lengths. Results suggest that regenerative mechanisms are functioning not only to produce structures, but also to influence growth of existing structures. Further investigation of juvenile and adult stages as well as comparative analyses of tail morphology in salamanders with complex life cycles will enhance our understanding of amphibian development and of the evolution of amphibian life cycles. J Morphol 233:15–29, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Through non-genetic maternal effects, mothers can tailor offspring phenotype to the environment in which young will grow up. If juvenile and adult ecologies differ, the conditions mothers experienced as juveniles may better predict their offspring's environment than the adult environment of mothers. In this case maternal decisions about investment in offspring quality should already be determined during the juvenile phase of mothers. I tested this hypothesis by manipulating juvenile and adult maternal environments independently in a cichlid fish. Females raised in a poor environment produced larger young than females raised without food limitations, irrespective of the feeding conditions experienced during adulthood. This maternal boost was due to a higher investment in eggs and to faster larval growth. Apparently, mothers prepare their offspring for similar environmental conditions to those they encountered as juveniles. This explanation is supported by the distribution of these fishes under natural conditions. Juveniles live in a different and much narrower range of habitats than adults. Therefore, the habitat mothers experienced as juveniles will allow them to predict their offspring's environment better than the conditions in the adult home range.  相似文献   

4.
Spotted salamanders (Ambystoma maculatum) are pond-breeding amphibians that disperse into terrestrial habitat from natal wetlands after undergoing metamorphosis, relying on small-mammal burrows and coarse woody debris for refugia. The effect of conspecifics on burrow use in juvenile salamanders is poorly understood. Determining how the presence of conspecifics influences the settlement decisions of juvenile salamanders can increase our understanding of amphibian dispersal and our ability to predict population dynamics. We conducted behavioral laboratory trials using 58 recently metamorphosed salamanders to examine how salamanders selected burrows in the presence of conspecifics. Salamanders were more likely to settle in a burrow that was occupied by a conspecific versus an unoccupied burrow. Our results indicate that juvenile salamanders may show conspecific attraction and/or trailing behavior during the dispersal phase.  相似文献   

5.
Life history theory and empirical studies suggest that large size or earlier metamorphosis are suitable proxies for increased lifetime fitness. Thus, across a gradient of larval habitat quality, individuals with similar phenotypes for these traits should exhibit similar post-metamorphic performance. Here we examine this paradigm by testing for differences in post-metamorphic growth and survival independent of metamorphic size in a temperate (spring peeper, Pseudacris crucifer) and tropical (red-eyed treefrog, Agalychnis callidryas) anuran reared under differing larval conditions. For spring peepers, increased food in the larval environment increased post-metamorphic growth efficiency more than predicted by metamorphic phenotype and led to increased mass. Similarly, red-eyed treefrogs reared at low larval density ended the experiment at a higher mass than predicted by metamorphic phenotype. These results show that larval environments can have delayed effects not captured by examining only metamorphic phenotype. These delayed effects for the larval environment link larval and juvenile life history stages and could be important in the population dynamics of organisms with complex life cycles.  相似文献   

6.
Relyea RA  Hoverman JT 《Oecologia》2003,134(4):596-604
Studies of phenotypic plasticity typically focus on traits in single ontogenetic stages. However, plastic responses can be induced in multiple ontogenetic stages and traits induced early in ontogeny may have lasting effects. We examined how gray treefrog larvae altered their morphology in four different larval environments and whether different larval environments affected the survival, growth, development, and morphology of juvenile frogs at metamorphosis. We then reared these juveniles in terrestrial environments under high and low intraspecific competition to determine whether the initial differences in traits at metamorphosis affected subsequent survival and growth, whether the initial phenotypic differences converged over time, and whether competition in the terrestrial environment induced further phenotypic changes. Larval and juvenile environments both affected treefrog traits. Larval predators induced relatively deep tail fins and short bodies, but there was no impact on larval development. In contrast, larval competitors induced relatively short tails and long bodies, reduced larval growth, and slowed larval development. At metamorphosis, larval predators had no effect on juvenile growth or relative morphology while larval competitors produced juveniles that were smaller and possessed relatively shorter limbs and shorter bodies. After 1 month of terrestrial competition among the juvenile frogs, the initial differences in juvenile morphology did not converge. There were no differences in growth due to larval treatment but there were differences in survival. Individuals that experienced low competition as tadpoles experienced near perfect survival as juvenile frogs but individuals that experienced high competition as tadpoles suffered an 18% decrease in survival as juvenile frogs. There were also morphological responses to juvenile competition, but these changes appear to be due, at least in part, to allometric effects. Collectively, these results demonstrate that larval environments can have profound impacts on the traits and fitness of organisms later in ontogeny.  相似文献   

7.
Dispersal is a key ecological process that is strongly influenced by both phenotype and environment. Here, we show that juvenile environment influences dispersal not only by shaping individual phenotypes, but also by changing the phenotypes of neighbouring conspecifics, which influence how individuals disperse. We used a model system (Tribolium castaneum, red flour beetles) to test how the past environment of dispersing individuals and their neighbours influences how they disperse in their current environment. We found that individuals dispersed especially far when exposed to a poor environment as adults if their phenotype, or even one‐third of their neighbours’ phenotypes, were shaped by a poor environment as juveniles. Juvenile environment therefore shapes dispersal both directly, by influencing phenotype, as well as indirectly, by influencing the external social environment. Thus, the juvenile environment of even a minority of individuals in a group can influence the dispersal of the entire group.  相似文献   

8.
Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. queenslandica life cycle includes a compulsory planktonic larval phase that can end only once the larva develops competence to respond to benthic signals that induce settlement and metamorphosis. The temporal onset of competence varies between individuals as revealed by idiosyncratic responses to inductive cues. Thus, the biphasic life cycle with a dispersing larval phase of variable length appears to be a metazoan synapomorphy and may be viewed as an ancestral polyphenic trait. Larvae of a particular age that are subjected to an inductive cue either maintain the larval form or metamorphose into the post-larval/juvenile form. Variance in the development of competence dictates that only a subset of a larval cohort will settle and undergo metamorphosis at a given time, which in turn leads to variation in dispersal distance and in location of settlement. Population divergence and allopatric speciation are likely outcomes of this conserved developmental polyphenic trait.  相似文献   

9.
Through environmentally induced maternal effects females may fine-tune their offspring’s phenotype to the conditions offspring will encounter after birth. If juvenile and adult ecologies differ, the conditions mothers experienced as juveniles may better predict their offspring’s environment than the adult females’ conditions. Maternal effects induced by the environment experienced by females during their early ontogeny should evolve when three ecological conditions are met: (1) Adult ecology does not predict the postnatal environmental conditions of offspring; (2) Environmental conditions for juveniles are correlated across successive generations; and (3) Juveniles occasionally settle in conditions that differ from the juvenile habitat of their mothers. By combining size-structured population counts, ecological surveys and a genetic analysis of population structure we provide evidence that all three conditions hold for Simochromis pleurospilus, a cichlid fish in which mothers adjust offspring quality to their own juvenile ecology. In particular we show (1) that the spatial niches and the habitat quality differ between juveniles and adults, and we provide genetic evidence (2) that usually fish of successive generations grow up in similar habitats, and (3) that occasional dispersal in populations with a different habitat quality is likely to occur. As adults of many species cannot predict their offspring’s environment from ambient cues, life-stage specific maternal effects are likely to be common in animals. It will therefore be necessary to incorporate parental ontogeny in the study of parental effects when juveniles and adults inhabit different environments.  相似文献   

10.
Dispersal is considered to be a species‐specific trait, but intraspecific variation can be high. However, when and how this complex trait starts to differentiate during the divergence of species/lineages is unknown. Here, we studied the differentiation of movement behaviour in a large salamander population (Salamandra salamandra), in which individual adaptations to different habitat conditions drive the genetic divergence of this population into two subpopulations. In this system, salamanders have adapted to the deposition and development of their larvae in ephemeral ponds vs. small first‐order streams. In general, the pond habitat is characterized as a spatially and temporally highly unpredictable habitat, while streams provide more stable and predictable conditions for the development of larvae. We analysed the fine‐scale genetic distribution of larvae, and explored whether the adaptation to different larval habitat conditions has in turn also affected dispersal strategies and home range size of adult salamanders. Based on the genetic assignment of adult individuals to their respective larval habitat type, we show that pond‐adapted salamanders occupied larger home ranges, displayed long‐distance dispersal and had a higher variability of movement types than the stream‐adapted individuals. We argue that the differentiation of phenotypically plastic traits such as dispersal and movement characteristics can be a crucial component in the course of adaptation to new habitat conditions, thereby promoting the genetic divergence of populations.  相似文献   

11.
In many marine invertebrates with biphasic life cycles, juvenile/adult traits begin to develop before metamorphosis. For structures that are present at multiple developmental stages, but have distinct larval and adult forms, it is unclear whether larval and adult structures have shared or distinct developmental origins. In this study, we examine the relationship between the larval and adult eyes in the polychaete Capitella teleta. In addition, we describe a novel marker for larval and juvenile photoreceptor cells. Infrared laser deletion of individual micromeres in early embryos suggests that the same micromeres at the eight‐cell stage that are specified to generate the larval eyes also form the adult eyes. Direct deletion of the larval eye, including the pigment cell and the corresponding photoreceptor cell, resulted in a lack of shading pigment cells in juveniles and adults, demonstrating that this structure does not regenerate. However, a sensory photoreceptor cell was present in juveniles following direct larval eye deletions, indicating that larval and adult photoreceptors are separate cells. We propose that the formation of the adult eye in juveniles of C. teleta requires the presence of the pigment cell of the larval eye, but the adult photoreceptor is either recruited from adjacent neural tissue or arises de novo after metamorphosis. These results are different from the development and spatial orientation of larval and adult eyes found in other polychaetes, in which two scenarios have been proposed: larval eyes persist and function as adult eyes; or, distinct pigmented adult eyes begin developing separately from larval eyes prior to metamorphosis.  相似文献   

12.
Synopsis We studied Sacramento River white sturgeon, Acipenser transmontanus, in the laboratory to develop a conceptual model of ontogenetic behavior and provide insight into probable behavior of wild sturgeon. After hatching, free embryos initiated a low intensity, brief downstream dispersal during which fish swam near the bottom and were photonegative. The weak, short dispersal style and behavior of white sturgeon free embryos contrasts greatly with the intense, long dispersal style and behavior (photopositive and swimming far above the bottom) of dispersing free embryos of other sturgeon species. If spawned eggs are concentrated within a few kilometers downstream of a spawning site, the adaptive significance of the free embryo dispersal is likely to move fish away from the egg deposition site to avoid predation and reduce fish density prior to feeding. Larvae foraged on the open bottom, swam <1 m above the bottom, aggregated, but did not disperse. Early juveniles initiated a strong dispersal with fish strongly vigorously swimming downstream. Duration of the juvenile dispersal is unknown, but the strong swimming likely disperses fish many kilometers. Recruitment failure in white sturgeon populations may be a mis-match between the innate fish dispersal and post-dispersal rearing habitat, which is now highly altered by damming and reservoirs. Sacramento River white sturgeon has a two-step downstream dispersal by the free embryo and juvenile life intervals. Diel activity of all life intervals peaked at night, whether fish were dispersing or foraging. Nocturnal behavior is likely a response to predation, which occurs during both activities. An intense black-tail body color was present on foraging larvae, but was weak or absent on the two life intervals that disperse. Black-tail color may be an adaptation for avoiding predation, signaling among aggregated larvae, or both, but not for dispersal.  相似文献   

13.
Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark–resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals.  相似文献   

14.
During dispersal the distances moved differ between individuals. The evolutionary causes of dispersal rate are much studied, for example, it is observed that dispersal is often a condition- and phenotype-dependent strategy. However, more empirical information is needed on factors affecting the dispersal distance. We study factors behind dispersal distance in the juvenile Siberian flying squirrel. The longer dispersing individuals abandoned natal site earlier in the season and were larger, perhaps being born earlier, than shorter dispersing individuals. These patterns did not hold between same-sex siblings, indicating that the early long-distance dispersal was more a between than a within-litter related phenomenon. Our results indicate differences between litters that are related to dispersal strategies of individuals. In flying squirrels, long-distance dispersal is not merely a secondary effect of short-distance dispersal. Instead, the distribution of dispersal distance is affected by factors enhancing long-distance dispersal.  相似文献   

15.
Adaptive significance of maternal induction of density-dependent phenotypes   总被引:2,自引:0,他引:2  
Density has been demonstrated to impact life history traits such as growth, fecundity and survival. Some authors have proposed that morphological and behavioral traits have evolved in response to density conditions. To escape the adverse effect of density, individuals can either adapt to crowding or avoid crowding by dispersing. The aim of this work is to study the interplay between local adaptation and dispersal in four populations of the common lizard, Lacerta vivipara, where densities of both the maternal and juvenile environment have been experimentally manipulated. Density was decreased in the spring by removing a quarter of the population at two sites and was un-manipulated in two other sites. One month later, we caught some pregnant females and kept them in the laboratory until parturition. To manipulate density of postnatal neonates and juveniles, we divided each clutch into two, and released half of the juveniles either in a reduced density site or in a control one. We then recaptured individuals a year after release and recorded their size and weight. When density was reduced, females increased their clutch size, but produced offspring of lower body condition than in the control sites. The conspicuous ventral color of females was likewise increased when density was reduced. However, offspring growth rate, local survival and dispersal were not influenced by maternal density. Juvenile females released in the reduced-density site had lower survival rate than those released in the control density site. Contrary to expectations, offspring dispersal was significantly higher at the reduced compared to control density sites. There was no interaction between maternal density habitat and the juvenile release habitat indicating that maternal effects did not influence juvenile life history traits in a different way according to the level of density. Moreover, clutch size and offspring size had no effect on juvenile growth or survival.  相似文献   

16.
In many organisms, genotypic selection may be a less effective means of adapting to unpredictable environments than is selection for phenotypic plasticity. To determine whether genotypic selection is important in the evolution of complex life cycles of amphibians that breed in seasonally ephemeral habitats, we examined whether mortality risk from habitat drying in natural populations of small-mouthed salamanders (Ambystoma texanum) corresponded to length of larval period when larvae from the same populations were grown in a common laboratory environment. Comparisons were made at two levels of organization within the species: 1) among geographic races that are under strongly divergent selection regimes associated with the use of pond and stream habitats and 2) among populations within races that use the same types of breeding habitats. Morphological evidence indicates that stream-breeding A. texanum evolved from pond-breeding populations that recently colonized streams. Larvae in streams incur heavy mortality from stream drying, so the upper bound on length of larval period is currently set by the seasonal duration of breeding sites. We hypothesized that selection would reduce length of larval period of pond-breeders that colonize streams if their larval periods are inherently longer than those of stream-breeders. The results of laboratory experiments support this hypothesis. When grown individually in a common environment, larvae from stream populations had significantly shorter larval periods than larvae from pond populations. Within races, however, length of larval period did not correlate significantly with seasonal duration of breeding sites. When males of both races were crossed to a single pond female, offspring of stream males had significantly shorter larval periods than offspring of pond males. Collectively, these data suggest that differences in complex life cycles among pond and stream-breeders are due to genotypic selection related to mortality from habitat drying. Stream larvae in the common-environment experiment were significantly smaller at metamorphosis than pond larvae. Yet, the evolution of metamorphic size cannot be explained readily by direct selection: there are no intuitively obvious advantages of being relatively small at metamorphosis in streams. A positive phenotypic correlation was observed between size at metamorphosis and length of larval period in most laboratory populations. A positive additive genetic correlation between these traits was demonstrated recently in another amphibian. Thus, we suspect that metamorphic size of stream-breeders evolved indirectly as a consequence of selection to shorten length of larval period.  相似文献   

17.
Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to variability in the larval environment and calls for research into the relative influence of potentially less benign anthropogenic environmental changes on innate immune defense traits.  相似文献   

18.
In species with complex life cycles hatching plasticity can provide an effective escape from egg predators, but theoretical studies predict a predation-risk trade-off across egg and larval stages. In this study, we examine whether the presence of an egg predator can alter the timing of hatching in an anuran, Rana temporaria, and the consequences of hatching plasticity after transition to the terrestrial habitat. Predator cues induced earlier hatching, and hatchlings were smaller, less developed and had relatively shorter and deeper tails than control hatchlings. The predator–induced differences in developmental time were compensated throughout the larval period; there was no predator effect on metamorph age or size. Surprisingly, the effects of egg predators were perceptible after metamorphosis. Juveniles emerging from the predator and the no-predator treatments differed in several size-adjusted morphological dimensions. Seemingly these morphological differences were not large enough to give rise to suboptimal growth or locomotor performance after metamorphosis. Thus, our results suggest only a short-term effect on juvenile phenotype, but not a trade-off between hatching time and juvenile performance.  相似文献   

19.
ABSTRACT Dispersal events can affect the distribution, abundance, population structure, and gene flow of animal populations, but little is known about long‐distance movements due to the difficulty of tracking individuals across space. We documented the natal and breeding dispersal of shrubland birds among 13 study sites in a 1000 km2 area in southeastern Ohio. In addition, we radio‐marked and tracked 37 adult males of one shrubland specialist, the Yellow‐breasted Chat (Icteria virens). We banded 1925 juveniles and 2112 adults of nine shrubland species from 2002 to 2005. Of these, 33 (1.7%) juveniles were encountered in subsequent years (2003–2006) as adults (natal dispersal) and 442 (20.9%) birds initially banded as breeding adults were re‐encountered in subsequent years (breeding dispersal). Apparent survival of juvenile shrubland birds on their natal patches was 0.024 (95% CI 0.016–0.036). After accounting for the probability of detection, we found that 21% of birds banded as juveniles and recaptured as adults returned to their natal patches, whereas 78% of adult birds showed fidelity to the patch where they were originally captured. Moreover, natal dispersers tended to move farther than breeding dispersers (corrected natal median = 1.7 km ± 0.37; corrected breeding median = 0.23 km ± 0.10). We used our estimates of natal dispersal and annual apparent survival to estimate true survival at 0.11 (95% CI 0.07–0.18) for juveniles in their first year. However, this estimate was only applicable for birds dispersing within 7 km of their natal patches. Interpatch movements of radio‐marked Yellow‐breasted Chats were not uncommon, with 13 of 37 males located in more than one habitat patch. Overall, we observed low natal philopatry, but high adult site fidelity for shrubland birds in our study area. Considering the frequency of short‐distance movements observed (median = 531 m, range = 88–1045 m), clustering of patches within 1 km might facilitate use of shrubland habitat.  相似文献   

20.
In animals with complex life cycles, the environment experienced early during the development may have strong effects on later performance and fitness. We investigated the intraspecific variation in the effects of larval temperature environment on the morphology and locomotory performance of juvenile pool frogs Rana lessonae originating from three closely located populations of the northern fringe metapopulation in central Sweden. Tadpoles were raised individually at two temperatures (20 and 25 °C) until metamorphosis. We measured the morphology of the metamorphs and tested the jumping performance of the froglets after complete tail absorption. We found that early temperature environment affected juvenile morphology, metamorphs from high-temperature environments having relatively longer hindlimbs (tibiofibulas) and longer tails when weight at metamorphosis was accounted for. In absolute terms, froglets from low temperature jumped significantly longer; however, after correcting for size differences the relationship was reversed, individuals raised at high temperature performing better. In both temperatures, relative jumping performance was positively associated with tibiofibula and body length. Populations differed both in metamorphic traits and in jumping capacity, especially at low temperature, suggesting microgeographical variation in temperature sensitivity within the metapopulation. Our results indicate that the temperature environment experienced during the early aquatic stages can influence the morphology and performance of juvenile frogs, and that these effects can be population specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号