首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reestablishment of seagrass vegetation is a vital part of recovering coastal marine ecosystem services. Historically the Hinase area was a famous for the fishing by coastal pound netting in eelgrass beds, but this practice was progressively displaced with oyster farming due to an enormous decline in seagrass vegetation. For several decades, the local fishers' cooperative has worked to restore eelgrass beds by a seeding method. Through these efforts, seagrass vegetation in their fishing area has increased to about half of their previous area. This study examined the effect of long-term seeding by fishers on the recovery of eelgrass beds in the Hinase area, based on analysis of eelgrass genetic structure using microsatellite markers. Specimens for the DNA analysis were collected from each of all eelgrass meadows that the fishers conducted sowing eelgrass seeds as well as from the source sites where they collected the seeds. The results found that restored beds in the study area have high genetic diversity comparable to natural ones. The multiple regression analysis revealed that a combined model of seedling intensity and geographic distance (R2 = .457) better explained genetic structure across our sampling sites than models of seedling intensity (R2 = .092) or geographic distance only (R2 = .344). This supports that the eelgrass seeds they sowed did not disturb the genetic structure but rather supplemented natural dispersal, suggesting that the fishers' seeding did not develop nonnatural seagrass meadows but certainly contributed to the recovery of natural seagrass meadows.  相似文献   

2.
Together with increasing environmental and anthropogenic pressures, pathogenic diseases are one of the important factors contributing to the ongoing decline of seagrass meadows worldwide; yet the diversity and ecology of the microorganisms acknowledged as seagrass parasites remain critically understudied. Here, we investigate phytomyxid parasites (Rhizaria: Endomyxa: Phytomyxea) of three different eelgrass (Zostera spp.) species found in the Northern hemisphere. We present molecular evidence that Plasmodiophora bicaudata, a long-recognized parasite of dwarf eelgrass taxa, is closely related to the novel phytomyxid recently discovered in root hairs of Zostera marina, and together they form a distinct clade within the order Phagomyxida, proposed here as Feldmanniella gen. nov. A full life cycle is systematically described in a phagomyxid representative for the first time, proving its conformity with the generalized phytomyxid life history, despite previous uncertainties. The presence of primary infection stages in nearly all collected eelgrass specimens, and subsequent analysis of amplicon sequences from a global Z. marina dataset, reveal phytomyxids to be ubiquitous and one of the predominant microeukaryotes associated with eelgrass roots on a global scale. Our discoveries challenge the current view of Phytomyxea as rare entities in seagrass meadows and suggest their generally low pathogenicity in natural ecosystems.  相似文献   

3.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

4.
Grazer diversity effects on ecosystem functioning in seagrass beds   总被引:10,自引:3,他引:7  
High plant species richness can enhance primary production, animal diversity, and invasion resistance. Yet theory predicts that plant and herbivore diversity, which often covary in nature, should have countervailing effects on ecosystem properties. Supporting this, we show in a seagrass system that increasing grazer diversity reduced both algal biomass and total community diversity, and facilitated dominance of a grazer‐resistant invertebrate. In parallel with previous plant results, however, grazer diversity enhanced secondary production, a critical determinant of fish yield. Although sampling explained some diversity effects, only the most diverse grazer assemblage maximized multiple ecosystem properties simultaneously, producing a distinct ecosystem state. Importantly, ecosystem responses at high grazer diversity often differed in magnitude and sign from those predicted from summed impacts of individual species. Thus, complex interactions, often opposing plant diversity effects, arose as emergent consequences of changing consumer diversity, advising caution in extrapolating conclusions from plant diversity experiments to food webs.  相似文献   

5.
Top predators can influence the structure and function of plant and animal communities. In coastal marine systems, fish, shark and mammal population declines are major drivers of recent ecosystem‐level change. Cascading effects of predatory wading birds, however, are less understood, even though wading bird populations have declined in many regions. We quantified the effects of predation by the piscivorous great blue heron Ardea herodias fannini on fish, invertebrates and epiphytes living in eelgrass Zostera marina. We found that herons forage on benthic fish in seagrass meadows, and foraging intensity increased from late spring until midsummer. When we experimentally excluded herons, benthic fish abundance increased, and the invertebrate assemblage shifted to more shrimp‐dominated assemblages while grazing gammarid amphipod abundance declined. These shifts were associated with reduced epiphyte abundance when herons were excluded, reflecting a four‐level trophic cascade and mediated by shifts in the grazer assemblage. In summary, we found that a piscivorous wading bird species exerts top down control in a subtidal seagrass ecosystem. Losses and recovery of wading birds could have ecosystem‐level ecological consequences that may need to be considered in the context of concern for overfishing and predator recovery in marine coastal management.  相似文献   

6.
Rachael E. Blake  J. Emmett Duffy 《Oikos》2010,119(10):1625-1635
When multiple stressors act simultaneously, their effects on ecosystems become more difficult to predict. In the face of multiple stressors, diverse ecosystems may be more stable if species respond differently to stressors or if functionally similar species can compensate for stressor effects on focal species. Many habitats around the globe are threatened by multiple stressors, including highly productive seagrass habitats. For example, in Chesapeake Bay, USA, regional climate change predictions suggest that elevated temperature and freshwater inputs are likely to be increasingly important stressors. Using seagrass mesocosms as a model system, we tested whether species richness of crustacean grazers buffers ecosystem properties against the impacts of elevated temperature and freshwater pulse stressors in a fully factorial experiment. Grazer species responded to pulsed salinity changes differently; abundance of Elasmopus levis responded negatively to freshwater pulses, whereas abundance of Gammarus mucronatus and Erichsonella attenuata responded positively or neutrally. Consistent with the hypothesis that biodiversity provides resistance stability, biomass of epiphytic algae that form the base of the food web was less affected by stressors in species‐rich grazer treatments than in single‐species grazer treatments. Stochastic (among‐replicate) variation of sessile invertebrate biomass within treatments was also reduced in more diverse grazer treatments. Therefore, grazer species richness tended to increase the resistance stability of both major components of the seagrass fouling community, algae and invertebrates, in the face of environmental stressors. Finally, in our model system, multi‐stressor impacts suggested a pattern of antagonism contrary to previous assumptions of synergistic stressor effects. Overall, our results confirm that invertebrate grazer species are functionally diverse in their response to environmental stressors, but are largely functionally redundant in their grazing effects leading to greater resistance stability of certain ecosystem properties in diverse grazer assemblages even when influenced by multiple environmental stressors.  相似文献   

7.
Abstract

Food webs and energy flow in seagrass ecosystems. A review on the pathways in the food webs of seagrass ecosystems, both tropical and temperate, with a particular emphasis to Mediterranean Posidonia oceanica meadows is given. Three main pathways of energy transfer from primary producers (host plant and algal epiphytes) were identified: i) the plant itself through photosynthetic tissue; ii) the leaf detritus which in some species forms a litter compartment; iii) the algal epiphytes of leaf blades. The detritus and epiphyte ways are the most common, but they can be differently important according to the season and the spatial patterns of the meadows.  相似文献   

8.
Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.  相似文献   

9.
Form–function relationships in plants underlie their ecosystem roles in supporting higher trophic levels through primary production, detrital pathways, and habitat provision. For widespread, phenotypically‐variable plants, productivity may differ not only across abiotic conditions, but also from distinct morphological or demographic traits. A single foundation species, eelgrass Zostera marina, typically dominates north temperate seagrass meadows, which we studied across 14 sites spanning 32–61°N latitude and two ocean basins. Body size varied by nearly two orders of magnitude through this range, and was largest at mid‐latitudes and in the Pacific Ocean. At the global scale, neither latitude, site‐level environmental conditions, nor body size helped predict productivity (relative growth rate 1–2% day‐1 at most sites), suggesting a remarkable capacity of Z. marina to achieve similar productivity in summer. Furthermore, among a suite of stressors applied within sites, only ambient leaf damage reduced productivity; grazer reduction and nutrient addition had no effect on eelgrass size or growth. Scale‐dependence was evident in different allometric relationships within and across sites for productivity and for modules (leaf count) relative to size. Zostera marina provides a range of ecosystem functions related to both body size (habitat provision, water flow) and growth rates (food, carbon dynamics). Our observed decoupling of body size and maximum production suggests that geographic variation in these ecosystem functions may be independent, with a future need to resolve how local adaptation or plasticity of body size might actually enable more consistent peak productivity across disparate environmental conditions.  相似文献   

10.
1. We quantified production and consumption of stream‐dwelling tadpoles and insect grazers in a headwater stream in the Panamanian uplands for 2 years to assess their effects on basal resources and energy fluxes. At the onset of our study, this region had healthy, diverse amphibian populations, but a catastrophic disease‐driven decline began in September 2004, which greatly reduced amphibian populations. 2. Insect grazer production was 348 mg ash‐free dry mass (AFDM) m?2 year?1 during the first year of the study and increased slightly to 402 mg AFDM m?2 year?1 during the second year. 3. Prior to amphibian declines, resource consumption by grazers (tadpoles and insects) was estimated at 2.9 g AFDM m?2 year?1 of algal primary production, which was nearly twice the estimated amount available. Insect grazers alone accounted for c. 81% of total primary consumption. During the initial stages of the declines, consumption remained at c. 2.9 g AFDM m?2 year?1, but only 35% of the available resource was being consumed and insect grazers accounted for c. 94% of total consumption. 4. Production and resource consumption of some insect grazers increased during the second year, as tadpoles declined, indicating a potential for functional redundancy in this system. However, other insect grazer taxa declined or did not respond to tadpole losses, suggesting a potential for facilitation between tadpoles and some insects; differential responses among taxa resulted in the lack of a response by insect grazers as a whole. 5. Our results suggest that before massive population declines, tadpoles exerted strong top‐down control on algal production and interacted in a variety of ways with other primary consumers. 6. As amphibian populations continue to decline around the globe, changes in the structure and function of freshwater habitats should be expected. Although our study was focused on tropical headwater streams, our results suggest that these losses of consumer diversity could influence other aquatic systems as well and may even reach to adjacent terrestrial environments.  相似文献   

11.
Conceptual models predict a unimodal effect of consumer abundance on prey diversity with the highest diversity at intermediate consumer abundance (intermediate disturbance hypothesis). Consumer selectivity and prey productivity are assumed to be further important determinants. Preferential grazing on dominant prey species favoured by high nutrient supply is supposed to increase prey diversity, whereas the effect of consumers on prey diversity may be negative under low nutrient conditions (grazer reversal hypothesis). We tested the effect of four common consumers the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on diversity and composition of epiphytes growing on eelgrass Zostera marina. Consumer density was manipulated (four levels: grazer free control, low, medium, high) based on abundances observed in eelgrass systems. Additionally, we manipulated nutrient supply (three levels) and the presence of Idotea in a factorial experiment. The impact of consumer abundance on epiphyte diversity varied depending on consumer identity and epiphyte evenness was affected rather than species number in this short‐term experiment. Idotea reduced epiphyte diversity (Shannon‐Wiener index H') and Gammarus increased epiphyte diversity. Littorina had no effect at low and medium abundance, but a negative effect in the high density treatment. Only Rissoa supported the conceptual models as it caused the proposed unimodal pattern in epiphyte diversity. The varying species‐specific selectivity of the studied consumers is likely to explain their diverse impact on epiphyte diversity. Nutrients enhanced epiphyte diversity at medium enrichment, whereas higher nutrient supply reduced epiphyte diversity. The effect of Idotea changed from negative at low nutrient concentration to positive at higher nutrient supply, supporting the grazer reversal hypothesis. This study implies that consumer species identity and nutrient concentrations are important in controlling prey diversity and composition. Different consumer selectivity and changes in selectivity with growing consumer abundance and nutrient concentration are the causal factors for this effect.  相似文献   

12.

Background

Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.

Methodology/Principal Findings

Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.

Conclusions/Significance

Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations.  相似文献   

13.
Eelgrass meadows are a common feature in shallow waters along the Norwegian coast, where they provide a habitat for a diverse infaunal community. Recreational boat anchoring and moorings physically scour seagrass and may affect the ecosystem functioning and resilience of the system to natural and anthropogenic disturbances. A small-scale eelgrass (Zostera marina) removal experiment was conducted to study the effects on macro- and meiofauna. Entire plants, including the rhizomes, were removed from 4?m2 patches in three eelgrass meadows in the inner Oslofjord in October 2010. Core samples were taken after a recovery period of 10 months, from the removed patches as well as from the surrounding meadow. Macrofauna (>500?μm) and meiofauna (63–500?μm) in the sediment were investigated for possible effects of the eelgrass removal. Macrofauna and meiofauna composition were site specific and therefore location was identified as the main determinant for the infaunal community. The eelgrass did not regrow within the recovery period and bare sediment patches with only single eelgrass shoots were present during the sampling. Our analyses support an influence of the removal on individual species, but not the complete community. In particular one species, the gastropod Peringia ulvae, was encountered in higher numbers in samples from the removed patches than in control samples. From a management perspective, such minor removal of eelgrass, on the scale of square metres, appears to have no long-lasting detrimental effect to the infaunal community in sheltered meadows with muddy sediments.  相似文献   

14.
Seagrass ecosystems fulfill ecologically and economically valuable functions in coastal marine environments. Unfortunately, seagrass beds are susceptible to natural and human disturbances, and their distrubution is declining worldwide. Although intentional disturbance of seagrass beds must be mitigated pursuant to U.S. law, to date mitigation of seagrass beds has not prevented a net loss of habitat. Transplantation of vegetative material from small areas of nearby beds is the primary method of seagrass mitigation. Restoration research on seagrasses has focused primarily on establishment of the plants and secondarily on the functional equivalency of the habitats. We questioned whether transplanted seagrass beds were comparable to “natural” beds in terms of genetic diversity and structure. We sampled Zostera marina L. (eel-grass) from 12 sites in the highly urbanized area of San Diego County and from pristine sites in Baja California. Using allozyme electrophoresis, we determined that genetic diversity (percentage of polymorphic loci, allele richness, expected and observed heterozygosities, and proportion of genetically unique individuals) was significantly reduced in transplanted eelgrass beds. Eelgrass from Baja California exhibited the highest genetic diversity. Based on Wright's F statistics, most of the genetic variation was distributed within rather than among sites (FST= 0.139), and the degree of genetic structure was only moderate at the greatest geographical scale (San Diego—Baja). Using a spatial statistical analysis (second-order analysis), we found virtually no evidence for nonrandom distribution of alleles or genotypes at scales of 3–50 m within beds. We discuss several hypotheses for reduced genetic diversity in transplanted eelgrass beds, including transplantation protocol, small size of transplantations, and reduced or failed sexual reproduction.  相似文献   

15.
While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore—the Japanese beetle (Popillia japonica)—increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.  相似文献   

16.
Genetic structure and diversity can reveal the demographic and selective forces to which populations have been exposed, elucidate genetic connections among populations, and inform conservation strategies. Beds of the clonal marine angiosperm Zostera marinaL. (eelgrass) in Chesapeake Bay (Virginia, USA) display significant morphological and genetic variation; abundance has fluctuated widely in recent decades, and eelgrass conservation is a major concern, raising questions about how genetic diversity is distributed and structured within this metapopulation. This study examined the influence of bed age (<65years versus<6years) and size (>100ha versus<10ha) on morphological and genetic (allozyme) structure and diversity within Chesapeake Bay eelgrass beds. Although both morphology and genetic diversity varied significantly among individual beds (F ST=0.198), neither varied consistently with bed age or size. The Chesapeake eelgrass beds studied were significantly inbred (mean F IS=0.680 over all beds), with inbreeding in old, small beds significantly lower than in other bed types. Genetic and geographic distances within and among beds were uncorrelated, providing no clear evidence of isolation by distance at the scale of 10's of km. These results suggest that local environmental conditions have a greater influence on plant morphology than do bed age or size. They support the hypotheses that eelgrass beds are established by multiple founder genotypes but experience little gene flow thereafter, and that beds are maintained with little loss of genetic diversity for up to 65 years. Since phenotypic and genotypic variation is partitioned among beds of multiple ages and sizes, eelgrass conservation efforts should maximize preservation of diversity by minimizing losses of all beds.  相似文献   

17.
Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom–up and top–down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top–down and bottom–up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top–down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross‐site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large‐scale patterns corresponded strikingly with prior small‐scale experiments. Our results link global and local evidence that biodiversity and top–down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.  相似文献   

18.
According to Zertuche-González et al. (2009), Ulva spp. blooms, favored by oyster cultivation, are likely displacing subtidal meadows of Zostera marina in San Quintin Bay, Baja California. The authors propose a partial removal of the seaweed to reduce the risk of eutrophication and eelgrass displacement in the bay. We warn about the removal of Ulva spp. biomass by raising six arguments that emphasize the necessity of a historical and ecosystem-based management for San Quintin Bay. First, processes other than competitive exclusion by Ulva spp. blooms more likely explain changes of Z. marina subtidal meadows in the past decade. Second, there is no consistent evidence that oyster cultivation is promoting blooms of Ulva spp. and the loss of eelgrass. Third, the removal of Ulva spp. biomass is based on experiences of heavily anthropogenically eutrophic systems, while San Quintin Bay is not. Fourth, the proposed course of actions to restore eelgrass meadows ignores general historical baselines of estuarine and coastal systems by confusing what it means to be “pristine.” Fifth, despite the important experimental evidence indicating strong top–down control in temperate seagrass meadows, Zertuche-González et al. (2009) underestimated the capacity of consumers in structuring dynamics of vegetated soft-bottom communities in San Quintin Bay. Sixth, Ulva expansa may exert positive effects on seagrass ecosystem properties and functions. Instead, we propose protection against the propagation of unsustainable practices in the bay, and the reintroduction of large consumers that are now absent in this ecosystem. An ecosystem-based analysis of the role of Ulva spp. on eelgrass dynamics is needed.  相似文献   

19.
Biological invasions modify the quality and supply of detrital subsidies to aquatic and terrestrial ecosystems. Where the invader has very different traits to native species, major changes in associated consumer communities may result, as a consequence of differences in their nutritional value and effects on the sedimentary habitat. We assessed how the replacement of seagrasses with the invasive alga Caulerpa taxifolia in modified Australian estuaries influences invertebrate communities of mudflats that are subsidized by detritus from submerged aquatic vegetation. Two months after experimental enrichment of sediments with high (60?g dry weight per 0.25?m2 plot) or low (30?g dry weight) quantities of either non-native C. taxifolia or native Posidonia australis or Zostera capricorni detritus, there were positive effects of detrital addition on invertebrate abundance that occurred irrespective of the resource added. By 4?months after addition, however, detritus from invasive C. taxifolia had produced effects on benthic communities that could not be replicated by detritus from either of the native seagrasses. Plots receiving the high loading of C. taxifolia detritus contained fewer invertebrates than plots of the other treatments, perhaps due to the induction of sediment hypoxia. The pattern, however, reversed at low detrital loading, with the plots receiving 30?g of C. taxifolia containing more invertebrates and more taxa than the other plots, presumably due to the greater resource availability for detritivores. Our results demonstrate that replacement of native seagrass with invasive algal detritus can have large impacts on sediment-dwelling communities.  相似文献   

20.
Intraspecific variation in habitat-forming species can have important ecological consequences at the population, community, and ecosystem level. However, the contribution of genetic variation among individuals to these effects is seldom documented. We quantified morphological and physiological variation among genotypes of a marine foundation species, the seagrass Zostera marina. We grew replicate shoots of eight genetically distinct Zostera individuals collected from Bodega Bay, California, in a common garden environment and then quantified shoot production and morphology, nutrient uptake, and key photosynthetic parameters. We found that genotypes differed in shoot production, biomass, and both root and shoot nutrient uptake rates, even when corrected for genotype-specific biomass differences. In addition, the rank order of uptake ability differed for ammonium and nitrate, indicating that genotypes may exhibit resource partitioning of different forms of nutrients. Our results suggest that both niche complementarity among genotypes and the sampling/selection effect could contribute to previously observed positive effects of seagrass clonal diversity on resource utilization and biomass production. Further, they highlight that genotypic variation in key traits of habitat-forming species could have measurable effects on community structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号