首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kate P. Maia  Ian P. Vaughan  Jane Memmott 《Oikos》2019,128(10):1446-1457
Pollination is an important ecosystem service threatened by current pollinator declines, making flower planting schemes an important strategy to recover pollination function. However, ecologists rarely test the attractiveness of chosen plants to pollinators in the field. Here, we experimentally test whether plant species roles in pollination networks can be used to identify species with the most potential to recover plant–pollinator communities. Using published pollination networks, we calculated each plant's centrality and chose five central and five peripheral plant species for introduction into replicate experimental plots. Flower visitation by pollinators was recorded in each plot and we tested the impact of introduced central and peripheral plant species on the pollinator and resident plant communities and on network structure. We found that the introduction of central plant species attracted a higher richness and abundance of pollinators than the introduction of peripheral species, and that the introduced central plant species occupied the most important network roles. The high attractiveness of central species to pollinators, however, did not negatively affect visitation to resident plant species by pollinators. We also found that the introduction of central plant species did not affect network structure, while networks with introduced peripheral species had lower centralisation and interaction evenness than networks with introduced central species. To our knowledge, this is the first time species network roles have been tested in a field experiment. Given that most restoration projects start at the plant community, being able to identify the plants with the highest potential to restore community structure and functioning should be a key goal for ecological restoration.  相似文献   

2.
The number of pollinators of a plant species is considered a measure of its ecological generalization and may have important evolutionary and ecological implications. Many pollination studies report inter‐annual fluctuations in the composition of pollinators to particular species. However, the factors causing such variation are still poorly understood. Here we investigate how flowering duration and plant and pollinator assemblages influenced the inter‐annual changes in the functional generalization level of the 20 most common plant species of a semi‐natural meadow in southern Norway. We also studied the extent to which changes in generalization levels were controlled by flower‐shape and flowering time. Large inter‐annual changes in generalization levels were common and there was no relationship between the generalization level one year and the following. Generalization level of particular plant species increased with flowering duration, sampling effort, and the abundance of managed honeybees in the community. Generalization level decreased with the flowering synchrony between the focal plant species and the rest of the plant community and with the focal species’ own abundance, which we attribute to inter‐specific competition for pollinator attraction and foraging decisions made by pollinators. Plants with different flower‐shapes and flowering times did not differ in the extent of inter‐annual variation in generalization levels. Most studies do not consider the effect of the plant community on the generalization level of particular plant species. We show here that both pollinator and plant assemblages can affect the inter‐annual variation in generalization levels of plant species. Studies like ours will help to understand how pollination interactions are structured at the community level, and the ecological and evolutionary consequences that these inter‐annual changes in generalization levels may have.  相似文献   

3.
Network analysis has in recent years improved our understanding of pollination systems. However, there is very little information about how functionally specialized plants and pollinators interact directly and indirectly in pollination networks. We have developed a parameter, Functional specialization index, to quantify functional specialization in pollination networks. Using this parameter, we examined whether different sized hummingbirds visit a distinct set of flowers in five hummingbird-pollinated plant assemblages from the Lesser Antilles, obtaining a simple relationship between hummingbird body size, network parameter and ecological function. In the Lesser Antilles, functionally specialized hummingbird pollination is distinct for plant species pollinated by the largest hummingbird species, whereas the pollination niche gradually integrates with the insect pollinator community as hummingbird body size decreases. The network approach applied in this study can be used to validate functional specialization and community-level interdependence between plants and pollinators, and it is therefore useful for evaluating and predicting plant resilience to pollinator loss, presently a global concern.  相似文献   

4.
The strength of interactions between plants for pollination depends on the abundance of plants and pollinators in the community. The abundance of pollinators may influence plant associations and densities at which individual fitness is maximized. Reduced pollinator visitation may therefore affect the way plant species interact for pollination. We experimentally reduced pollinator visitation to six pollinator‐dependent species (three from an alpine and three from a lowland community in Norway) to study how interactions for pollination were modified by reduced pollinator availability. We related flower visitation, pollen limitation and seed set to density of conspecifics and pollinator‐sharing heterospecifics inside 30 dome‐shaped cages partially covered with fishnet (experimental plots) and in 30 control plots. We expected to find stronger interactions between plants in experimental compared to controls plots. The experiment modified plant–plant interactions for pollination in all the six species; although for two of them neighbourhood interactions did not affect seed set. The pollen limitation and seed set data showed that reduction of pollinator visits most frequently resulted in novel and/or stronger interactions between plants in the experimental plots that did not occur in the controls. Although the responses were species‐specific, there was a tendency for increasing facilitative interactions with conspecific neighbours in experimental plots where pollinator availability was reduced. Heterospecifics only influenced pollination and fecundity in species from the alpine community and in the experimental plots, where they competed with the focal species for pollination. The patterns observed for visitation rates differed from those for fecundity, with more significant interactions between plants in the controls in both communities. This study warns against the exclusive use of visitation data to interpret plant–plant interactions for pollination, and helps to understand how plant aggregations may buffer or intensify the effects of a pollinator loss on plant fitness.  相似文献   

5.
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.  相似文献   

6.
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.  相似文献   

7.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

8.
Hugo Fort 《Oikos》2014,123(12):1469-1478
Making quantitative predictions of the effects of human activities on ecological communities is crucial for their management. In the case of plant–pollinator mutualistic networks, despite the great progress in describing the interactions between plants and their pollinators, the capability of making quantitative predictions is still lacking. Here, in order to estimate pollinator species abundances and their niche distribution, I propose a general method to transform a plant–pollinator network into a competition model between pollinator species. Competition matrices were obtained from ‘first principles’ calculations, using qualitative interaction matrices compiled for a set of 38 plant–pollinator networks. This method is able to make accurate quantitative predictions for mutualistic networks spanning a broad geographic range. Specifically, the predicted biodiversity metrics for pollinators – species relative abundances, Shannon equitability and Gini–Simpson indices – agree quite well with those inferred from empirical counts of visits of pollinators to plants. Furthermore, this method allows building a one‐dimensional niche axis for pollinators in which clusters of generalists are separated by specialists thus rendering support to the theory of emergent neutrality. The importance of interspecific competition between pollinator species is a controversial and unresolved issue, considerable circumstantial evidence has accrued that competition between insects does occur, but a clear measure of its impact on their species abundances is still lacking. I contributed to fill this gap by quantifying the effect of competition between pollinators. Particular applications of our analysis could be to estimate the quantitative effects of removing a species from a community or to address the fate of populations of native organisms when foreign species are introduced to ecosystems far beyond their home range.  相似文献   

9.
A. Bradley Duthie  John D. Nason 《Oikos》2016,125(11):1597-1606
Mutualism is ubiquitous in nature, and nursery pollination mutualisms provide a system well suited to quantifying the benefits and costs of symbiotic interactions. In nursery pollination mutualisms, pollinators reproduce within the inflorescence they pollinate, with benefits and costs being measured in the numbers of pollinator offspring and seeds produced. This type of mutualism is also typically exploited by seed‐consuming non‐pollinators that obtain resources from plants without providing pollination services. Theory predicts that the rate at which pollen‐bearing ‘foundresses’ visit a plant will strongly affect the plant's production of pollinator offspring, non‐pollinator offspring, and seeds. Spatially aggregated plants are predicted to have high rates of foundress visitation, increasing pollinator and seed production, and decreasing non‐pollinator production; very high foundress visitation may also decrease seed production indirectly through the production of pollinators. Working with a nursery mutualism comprised of the Sonoran Desert rock fig, Ficus petiolaris, and host‐specific pollinating and non‐pollinating fig wasps, we use linear models to evaluate four hypotheses linking species interactions to benefits and costs: 1) foundress density increases with host‐tree connectivity, 2) pollinator production increases with foundress density, and 3) non‐pollinator production and 4) seed production decrease with pollinator production. We also directly test how tree connectivity affects non‐pollinator production. We find strong support for our four hypotheses, and we conclude that tree connectivity is a key driver of foundress visitation, thereby strongly affecting spatial distributions in the F. petiolaris community. We also find that foundress visitation decreases at the northernmost edge of the F. petiolaris range. Finally, we find species‐specific effects of tree connectivity on non‐pollinators to be strongly correlated with previously estimated non‐pollinator dispersal abilities. We conclude that plant connectivity is highly important for predicting plant‐pollinator‐exploiter dynamics, and discuss the implications of our results for species coexistence and adaptation.  相似文献   

10.
The role of biological diversity in maintaining ecosystem functioning is a central issue in ecology. Most studies on diversity–functioning relationships have focused on ecosystem and community levels, leaving the extension of those relationships to other organization levels, such as populations, as a challenging and unsolved issue. Empirical studies have shown links between pollinator diversity and plant fecundity, suggesting that a diversity–functioning relationship at the population level may occur in pollination systems. We theoretically explored the effect of pollinator diversity on plant reproduction. We found that low pollinator diversity is beneficial when the most abundant pollinators are the most effective. In contrast, when the most effective pollinators are not the most abundant, we found an optimal value of pollinator diversity at which plant fecundity is maximized. When we parametrized our model with real data, we obtained that an increase in pollinator diversity was beneficial for the reproduction of some plants whereas it was harmful for other plants, the outcome depending exclusively on the differences in effectiveness among pollinators. Consequently, our theoretical approach suggests that in pollination systems the diversity–function relationship may be explained as the consequence of the interaction between among-pollinator differences in effectiveness and frequency of interaction, without the need to invoke additional ecological mechanisms.  相似文献   

11.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

12.
Laura Burkle  Rebecca Irwin 《Oikos》2009,118(12):1816-1829
Striking changes in food web structure occur with alterations in resource supply. Like predator–prey interactions, many mutualisms are also consumer–resource interactions. However, no studies have explored how the structure of plant–pollinator networks may be affected by nutrient enrichment. For three years, we enriched plots of subalpine plant communities with nitrogen and observed subsequent effects on plant–pollinator network structure. Although nitrogen enrichment affects floral abundance and rates of pollinator visitation, we found no effects of nitrogen enrichment on the core group of generalist plants and pollinators or on plant–pollinator network structure parameters, such as network topology (the identity and frequency of interactions) and the degree of nestedness. However, individual plant and pollinator taxa were packed into the nested networks differently among nitrogen treatments. In particular, pollinators visited different numbers and types of plants in the nested networks, suggesting weak, widespread effects of nitrogen addition on individual taxa. Independent of nitrogen enrichment, there were large interannual differences in network structure and interactions, due to species turnover among years and flexibility in interacting with new partners. These data suggest that the community structure of small‐scale mutualistic networks may be relatively robust to short‐term bottom–up changes in the resource supply, but sensitive to variation in the opportunistic behavior and turnover of plant and pollinator species among years.  相似文献   

13.
Lázaro A  Hegland SJ  Totland O 《Oecologia》2008,157(2):249-257
The pollination syndrome hypothesis has provided a major conceptual framework for how plants and pollinators interact. However, the assumption of specialization in pollination systems and the reliability of floral traits in predicting the main pollinators have been questioned recently. In addition, the relationship between ecological and evolutionary specialization in pollination interactions is still poorly understood. We used data of 62 plant species from three communities across southern Norway to test: (1) the relationships between floral traits and the identity of pollinators, (2) the association between floral traits (evolutionary specialization) and ecological generalization, and (3) the consistency of both relationships across communities. Floral traits significantly affected the identity of pollinators in the three communities in a way consistent with the predictions derived from the pollination syndrome concept. However, hover flies and butterflies visited flowers with different shapes in different communities, which we mainly attribute to among-community variation in pollinator assemblages. Interestingly, ecological generalization depended more on the community-context (i.e. the plant and pollinator assemblages in the communities) than on specific floral traits. While open yellow and white flowers were the most generalist in two communities, they were the most specialist in the alpine community. Our results warn against the use of single measures of ecological generalization to question the pollination syndrome concept, and highlight the importance of community comparisons to assess the pollination syndromes, and to understand the relationships between ecological and evolutionary specialization in plant-pollinator interactions.  相似文献   

14.
Luísa Gigante Carvalheiro  Jacobus Christiaan Biesmeijer  Gita Benadi  Jochen Fründ  Martina Stang  Ignasi Bartomeus  Christopher N. Kaiser‐Bunbury  Mathilde Baude  Sofia I. F. Gomes  Vincent Merckx  Katherine C. R. Baldock  Andrew T. D. Bennett  Ruth Boada  Riccardo Bommarco  Ralph Cartar  Natacha Chacoff  Juliana Dänhardt  Lynn V. Dicks  Carsten F. Dormann  Johan Ekroos  Kate S.E. Henson  Andrea Holzschuh  Robert R. Junker  Martha Lopezaraiza‐Mikel  Jane Memmott  Ana Montero‐Castaño  Isabel L. Nelson  Theodora Petanidou  Eileen F. Power  Maj Rundlöf  Henrik G. Smith  Jane C. Stout  Kehinde Temitope  Teja Tscharntke  Thomas Tscheulin  Montserrat Vilà  William E. Kunin 《Ecology letters》2014,17(11):1389-1399
Co‐flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant–pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non‐native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant–pollination networks.  相似文献   

15.
Most flowering plants depend on pollinators to reproduce. Thus, evaluating the robustness of plant-pollinator assemblages to species loss is a major concern. How species interaction patterns are related to species sensitivity to partner loss may influence the robustness of plant-pollinator assemblages. In plants, both reproductive dependence on pollinators (breeding system) and dispersal ability may modulate plant sensitivity to pollinator loss. For instance, species with strong dependence (e.g. dioecious species) and low dispersal (e.g. seeds dispersed by gravity) may be the most sensitive to pollinator loss. We compared the interaction patterns of plants differing in dependence on pollinators and dispersal ability in a meta-dataset comprising 192 plant species from 13 plant-pollinator networks. In addition, network robustness was compared under different scenarios representing sequences of plant extinctions associated with plant sensitivity to pollinator loss. Species with different dependence on pollinators and dispersal ability showed similar levels of generalization. Although plants with low dispersal ability interacted with more generalized pollinators, low-dispersal plants with strong dependence on pollinators (i.e. the most sensitive to pollinator loss) interacted with more particular sets of pollinators (i.e. shared a low proportion of pollinators with other plants). Only two assemblages showed lower robustness under the scenario considering plant generalization, dependence on pollinators and dispersal ability than under the scenario where extinction sequences only depended on plant generalization (i.e. where higher generalization level was associated with lower probability of extinction). Overall, our results support the idea that species generalization and network topology may be good predictors of assemblage robustness to species loss, independently of plant dispersal ability and breeding system. In contrast, since ecological specialization among partners may increase the probability of disruption of interactions, the fact that the plants most sensitive to pollinator loss interacted with more particular pollinator assemblages suggest that the persistence of these plants and their pollinators might be highly compromised.  相似文献   

16.
Generalization of pollination systems is widely accepted by ecologists in the studies of plant–pollinator interaction networks at the community level, but the degree of generalization of pollination networks remains largely unknown at the individual pollinator level. Using potential legitimate pollinators that were constantly visiting flowers in two alpine meadow communities, we analyzed the differences in the pollination network structure between the pollinator individual level and species level. The results showed that compared to the pollinator species‐based networks, the linkage density, interaction diversity, interaction evenness, the average plant linkage level, and interaction diversity increased, but connectance, degree of nestedness, the average of pollinator linkage level, and interaction diversity decreased in the pollinator individual‐based networks, indicating that pollinator individuals had a narrower food niche than their counterpart species. Pollination networks at the pollinator individual level were more specialized at the network level (H2) and the plant species node level (d′) than at the pollinator species‐level networks, reducing the chance of underestimating levels of specialization in pollination systems. The results emphasize that research into pollinator individual‐based pollination networks will improve our understanding of the pollination networks at the pollinator species level and the coevolution of flowering plants and pollinators.  相似文献   

17.
Species roles in ecological networks combine to generate their architecture, which contributes to their stability. Species trait diversity also affects ecosystem functioning and resilience, yet it remains unknown whether species’ contributions to functional diversity relate to their network roles. Here, we use 21 empirical pollen transport networks to characterise this relationship. We found that, apart from a few abundant species, pollinators with original traits either had few interaction partners or interacted most frequently with a subset of these partners. This suggests that narrowing of interactions to a subset of the plant community accompanies pollinator niche specialisation, congruent with our hypothesised trade‐off between having unique traits vs. being able to interact with many mutualist partners. Conversely, these effects were not detected in plants, potentially because key aspects of their flowering traits are conserved at a family level. Relating functional and network roles can provide further insight into mechanisms underlying ecosystem functioning.  相似文献   

18.
Fang Q  Huang SQ 《PloS one》2012,7(3):e32663
Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.  相似文献   

19.
20.
Nontarget species such as pollinators may be of great importance to the restoration process and the long‐term functioning of restored habitats, but little is known about how such groups respond to habitat restoration. I surveyed bee communities at five equal‐aged restored sites, paired with five reference sites (riparian remnants) along the Sacramento River, California, United States. Flower availability and bee visitation patterns were also measured to examine the restoration of pollination function. Restoration of structural vegetation allowed diverse and abundant native bee communities to establish at the restoration sites; however, the composition of these important pollinator communities was distinct from that in the remnant riparian sites. Differences did not arise primarily from differences in the composition of the flowering‐plant community; rather there must be other physical characteristics of the restored sites or differences in nesting site availability that led to the different pollinator communities. Because sites were spatially paired, the differences are unlikely to be driven by landscape context. Bee life‐history and other biological traits may partially explain the differences between bee communities at restored and remnant sites. Patterns of visitation to native plant species suggest that pollination function is restored along with pollinator abundance and richness; however, function may be less robust in restored habitats. An examination of interaction networks between bees and plant species found at both restored and remnant riparian sites showed less redundancy of pollinators visiting some plants at restored habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号