首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivory induces various responses in plants, thus altering the plants’ phenotype in chemical and morphological traits. Herbivore‐induced changes in vegetative plant parts, plant‐physiological mechanisms, and effects on plant‐animal interactions have been intensively studied from species to community level. In contrast, we are just beginning to examine herbivore‐induced effects on reproductive plant parts and flower–visitor interactions, especially in a community context. We investigated the effect of herbivory at different plant developmental stages on plant growth, floral and vegetative phenotype and reproduction in Sinapis arvensis (Brassicaceae). Additionally, we tested how herbivore‐induced plant responses affect flower–visitor interactions and plant reproduction in species‐rich communities. Our results indicate that the timing of herbivory affects the magnitude of changes in plant traits. Herbivory in early but not in late development accelerated the plant's flowering phenology, reduced vegetative growth, increased stem trichome density and altered floral morphology and scent. These findings suggest age‐dependent tradeoffs between growth, defense and reproduction. Herbivore‐induced changes in flower traits also affected flower–visitor interactions in a community context with effects on the structure of flower–visitor networks. However, changes in the network structure had neglectable effects on plant reproduction, i.e. plants were able to compensate altered flower visitor behavior. Thus, herbivory is a source of intraspecific variation in reproductive traits, which can be behaviorally relevant for potential pollinators. However, plants were capable to maintain reproductive success suggesting a tolerance against herbivory. We conclude that in our study system induced direct or indirect defenses that have often been shown to decrease negative effects of herbivores on vegetative plant parts come at no costs for plant reproduction.  相似文献   

2.
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above‐ and belowground herbivores differ substantially in life‐history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above‐ and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root‐feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above‐ and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal‐related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.  相似文献   

3.
《植物生态学报》2017,41(10):1033
Aims Plant-herbivore interaction is a hot topic in the study of biodiversity and ecosystem functions. Herbivores can negatively affect seedling growth and therefore can alter the dynamics of plant recruitment. However, previous studies do not fully reveal the relative importance of different plant functional traits on herbivory intensity and rarely link herbivory to the relative abundance of plant species.Methods Here, we measured 11 plant functional traits and the relative abundance of seedlings of 16 common woody species in the subtropical forests on 29 islands in Thousand Island Lake, East China. We then used multivariate regression and variance partitioning to test the contribution of functional traits and the relative abundance to interspecific differences of insect herbivory intensity.Important findings Our study found that both plant functional traits (e.g. carbon nitrogen ratio, leaf thickness) and the relative abundance of woody species played important roles in herbivory intensity, and they jointly contributed 54% of the variance of the interspecific differences. Among these factors, species with higher defensive ability, lower nutrient content and higher relative abundance had lower herbivory intensity. We suggest to consider both individual level traits (functional traits) and community level attributes (the relative abundance) in future herbivory studies.  相似文献   

4.
Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth–differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis—a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.  相似文献   

5.
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.  相似文献   

6.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

7.
Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape. Specifically, intraspecific phytochemical changes associated with vertical strata in forests were hypothesised to affect herbivore communities of the neotropical shrub Piper kelleyi Tepe (Piperaceae). Using a field experiment, we found that phytochemical diversity increased with canopy height, and higher levels of phytochemical diversity located near the canopy were characterised by tradeoffs between photoactive and non‐photoactive biosynthetic pathways. For understory plants closer to the ground, phytochemical diversity increased as direct light transmittance decreased, and these plants were characterised by up to 37% reductions in herbivory. Our results suggest that intraspecific phytochemical diversity structures herbivore communities across the landscape, affecting total herbivory.  相似文献   

8.
The consequences of tropical forest fragmentation on herbivory are poorly understood. The limited evidence suggests that forest fragmentation can have positive, negative or neutral effects on herbivory. Inconsistencies may be partly explained by plant interspecific variation and differential responses related to plant life history. In this study we examined the effects of forest fragmentation and plant regeneration mode (shade‐tolerant and light‐demanding species) on sapling herbivory using a large sample of the community (97 species, representing 25% of the woody flora of the study site), and a subset of species shared by forest fragments and continuous forest. For the latter, we also analyzed the effects of species identity on variation in herbivory. Also, for the shared species we used two techniques to measure herbivory: standing herbivory (i.e. instantaneous, actual damage) and cumulative herbivory (i.e. damage, accumulated over time, on initially intact leaves). Insect herbivory was the predominant type of damage in the two forest types, and standing herbivory at both the community and the shared species level was significantly higher in continuous forest than in fragments. Considering shared species, both standing and cumulative herbivory were significantly higher in light‐demanding than in shade‐tolerant species. Cumulative herbivory also showed a significant interaction between forest fragmentation and plant regeneration mode, whereby a significant decline in herbivory in fragments was driven by reduced herbivory in shade‐tolerant species, whereas for light‐demanding species herbivory did not change significantly, due to contrasting species‐specific responses. We conclude that tropical forest fragmentation reduces insect herbivory, but this depends on plant regeneration mode and species identity. These changes could have effects on plant regeneration and diversity in forest fragments via long‐term demographic consequences.  相似文献   

9.
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.  相似文献   

10.
Throughout the course of their evolution, plants have acquired a wide range of chemical and mechanical defenses to protect against herbivores. Ehrlich & Raven's coevolutionary theory suggests that this diversification of defensive traits is driven by the strong impact of novel traits on insect herbivores. However, the impact of plant defenses on insects is difficult to compare between related plant species due to variation in environmental and biotic conditions. We standardized these factors as far as possible by analyzing the effects of chemical and mechanical defensive traits on insects in a local community of 11 Salicaceae species growing in sympatry, and their leaf‐chewing herbivores. Defensive traits (salicylates, flavonoids, tannins, trichomes, and leaf toughness) were generally not inter‐correlated, with the exception of a negative correlation between salicylates and trichomes. The content of salicylates, a novel group of defensive metabolites in the Salicaceae, was correlated with low herbivore diversity and high host specificity. Despite these effects, the phylogeny of the studied species shows loss of salicylates in some Salix species instead of their further diversification. This could be due to salicylates not decreasing the overall abundance of herbivores, despite accounting for up to 22% of the dry leaf mass and therefore being costly. The defense of low‐salicylate willow species is thus probably maintained by other defensive traits, such as trichomes. Our study shows that the balance between costs and benefits of defensive traits is not necessarily in favor of novel compounds and illustrates a process, which may lead to the reduction in a defensive trait.  相似文献   

11.
植物光合作用固定下来的能量沿食物链首先流向相邻营养级的植食性动物。植物-植食性动物相互关系是自然界中最普遍、最重要的一种种间关系, 是食物网理论的基础与核心。该文从植食性动物对植物个体、种群和群落特征的影响, 以及植物在个体、种群和群落3个水平上对植食性动物的防御机制与策略两方面, 综述了当前植物-植食性动物相互关系的研究进展。植食性动物的采食, 可以显著改变植物个体或种群的生长、繁殖和存活率, 植物种群的变化则进一步反馈于植物群落组成和多样性特征。相应地, 植物在个体、种群和群落水平形成了一系列的防御机制, 其中在个体和种群水平以化学与物理防御为主, 而群落水平则是通过影响动物的行为或天敌而实现的。该文对相关领域的重要假说和理论进行了介绍、比较。最后, 该文提出了植物-植食性动物相互关系研究的未来发展趋势。随着全球变化和人类活动对自然系统干扰的加剧, 在不同的时空尺度上探索这些干扰如何影响动植物关系, 以及这些影响如何反馈于生态系统的结构、功能和稳定性, 不但有重要的理论意义, 也将为未来制定合理的生态系统管理政策提供实际支撑。  相似文献   

12.
Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition‐mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore‐free habitat altered the orientation of G , revealing a negative genetic covariation between defense‐ and competition‐related metabolites that is typically masked in herbivore‐exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition‐allocation trade‐offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture.  相似文献   

13.
Coastal communities are under threat from many and often co‐occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient‐enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance‐induced changes in seagrass help to better understand the ecological functioning of seagrass ecosystems in the face of human disturbances and may have important implications regarding the resilience and conservation of these threatened ecosystems.  相似文献   

14.
15.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

16.
Distorted plant diversity patterns due to ungulate herbivory could be explained by changes in community assembly processes, but the effects of ungulate herbivory on plant community assembly remain unclear. Here, we examined the role of deer herbivory in the regulation of the assembly processes of a forest floor plant community by assessing species and functional diversity in over- and no-grazing plots (control and exclosure plots, respectively) in Shiretoko National Park in Japan. Compared with the exclosure plot, vegetation coverage was considerably lower, and species richness and diversity were higher in the control plot. Functional traits associated with competitive ability (leaf area and chlorophyll content) were significantly higher in the exclosure plot. The pattern of functional diversity changed from overdispersion to clustering with an increase in local crowdedness. This trait clustering indicates that the local communities that were free from ungulate disturbance gradually became dominated by some competitively superior plant species, which led to low species diversity and biotic homogenization. In contrast, the reduction in vegetation due to overgrazing by deer resulted in an increase in the relative importance of stochastic assembly processes, which enabled the coexistence of various species, including less competitive ones. Our results emphasize that although deer overabundance is of concern, their complete exclusion has a negative consequence from an ecological perspective. Because deer herbivory is an inherent process that affects the biodiversity of plants on the forest floor, the establishment of fences requires careful consideration to ensure the conservation of ecological processes and their associated biodiversity.  相似文献   

17.
Antagonistic interactions between insect herbivores and plants impose selection on plants to defend themselves against these attackers. Although selection on plant defense traits has typically been studied for pairwise plant-attacker interactions, other community members of plant-based food webs are unavoidably affected by these traits as well. A plant trait might, for example, affect parasitoids and predators feeding on the herbivore. Consequently, defensive plant traits structure the diversity and composition of the complex community associated with the plant, and communities as a whole also feed back to selection on plant traits. Here, we review recent developments in our understanding of how plant defense traits structure insect communities and discuss how molecular mechanisms might drive community-wide effects.  相似文献   

18.
研究植物群落系统发育和功能性状结构有助于了解植物多样性维持机制及物种间的亲缘关系。甘肃省地理环境复杂,显著而多变的气候梯度形成了区域植被和环境差异,丰富了栖息地类型,具有显著的纵向连通性和纬度隔离性,以甘肃省典型纬度梯度植物群落为研究对象,通过对其进行群落学调查和功能性状测定,计算净亲缘关系指数(Net relatedness index, NRI)和平均成对性状距离(Mean pairwise trait distance, PW)来分析植物群落系统发育结构和功能性状格局对不同纬度的响应。结果表明:(1) Shannon-Weiner多样性指数,物种丰富度,谱系α多样性指数表现出随纬度增加而显著降低的变化趋势(P<0.05),Pielou均匀度指数随纬度的升高没有显著的变化趋势;(2)系统发育结构在高、低纬度上趋于发散状态(NRI<0),在中纬度上又表现出聚集(NRI>0)的谱系结构,表明种间竞争作用减弱,环境过滤作用逐渐增强,随纬度继续升高相似性限制作用在物种聚集过程中占优势;而群落的功能性状结构随着纬度增加表现出与谱系结构相反的状态,因此植物群落的系统发育和功能...  相似文献   

19.
Close spatial relationships between plant species are often important for defense against herbivory. The associational plant defense may have important implications for plant community structure, species diversity, and species coexistence. An increasing number of studies have focused on associational plant defense against herbivory at the scale of the individual plant and its nearest neighbors. However, the average neighborhood effects between plant species at the scale of whole plant communities have received almost no attention. The aims of this study were to determine patterns of spatial relationship between different plant species that can provide effective defense against herbivory. We conducted a manipulative experiment using sheep and three native plant species with different palatability. Consumption of palatable plants by herbivores was largest when the three plant species were isolated in three patches and independent of each other. A homogenous and spatially equal neighbor relationship between the three species did not reduce the risk of herbivory of palatable species compared to isolation of these species, but it reduced the total intake of all plant species. The palatable species was subject to less herbivory in a complex spatial neighborhood of several plant species. High complexity of spatial neighborhood resulted in herbivores passively reducing selectivity, thereby reducing the probability of damage to palatable species in the community, or making inaccurate judgments in foraging selectivity between and within patches, thereby reducing the vulnerability of palatable plants and even the whole plant community. We conclude that compelling herbivores to passively reduce the magnitude of foraging selectivity by establishing spatially complex neighborhoods between plant species is a compromise and optimal spatial strategy by plants to defend themselves again herbivory. This may contribute not only to maintenance of plant species diversity but also to a stable coexistence between herbivores and plants in grassland ecosystems.  相似文献   

20.
Plant diversity can affect ecological processes such as competition and herbivory, and these ecological processes can act as drivers of evolutionary change. However, surprisingly little is known about how ecological variation in plant diversity can alter selective regimes on members of the community. Here, we examine how plant diversity at two different scales (genotypic and species diversity) impacts natural selection on a focal plant species, the common evening primrose (Oenothera biennis). Because competition is frequently relaxed in both genotypically and species rich plant communities, we hypothesized that increasing diversity would weaken selection on competitive ability. Changes in plant diversity can also affect associated arthropod communities. Therefore, we hypothesized that diversity would alter selection on plant traits mediating these interactions, such as herbivory related traits. We grew 24 focal O. biennis genotypes within four different neighbourhoods: genotypic monocultures or polycultures of O. biennis, and species monocultures or polycultures of old-field species that commonly co-occur with O. biennis. We then measured genotypic selection on nine plant traits known to be ecologically important for competition and herbivory. Focal O. biennis plants were smaller, flowered for shorter periods of time, had lower fitness, and experienced greater attack from specialist predispersal seed predators when grown with conspecifics versus heterospecifics. While neither conspecific nor heterospecific diversity altered trait means, both types of diversity altered the strength of selection on focal O. biennis plants. Specifically, selection on plant biomass was stronger in conspecific monocultures versus polycultures, but weaker in heterospecific monocultures versus polycultures. We found no evidence of selection on plant traits that mediate insect interactions, despite differences in arthropod communities on plants surrounded by conspecifics versus heterospecifics. Our data demonstrate that plant genotypic and species diversity can act as agents of natural selection, potentially driving evolutionary changes in plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号