首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a preliminary investigation of late Pleistocene cave bear traces from Ur?ilor Cave in the western Carpathians, Romania. The bears left thousands of traces on the walls, plateaus, and slopes of the cave interior. Some areas in the cave have been heavily trampled, leaving more than 140 hibernation beds as well as fur impressions. The footprints of cave bears are assigned to Ursichnus europaeus nov. ichnogen. and nov. ichnosp. and the cave bear-beds to Ursalveolus carpathicus nov. ichnogen. and nov. ichnosp. as behavioral traces. Tens of thousands of scratch marks on the slopes and top of a clay plateau are the result of bears moving from the hibernation area down to a stream and back. These traces reveal that the cave bears had short claws, similar to those of modern, primarily herbivorous black bears. Deep within the cave, three weathered, articulated cave bear skeletons still lie in their hibernation beds on the clay plateaus or a natural cave corner. One of these bears was a one-year-old male cub that did not survive its first hibernation; a second skeleton close was an adult female. The third, a young male, was found close to the end of the cave system. The bears of Ur?ilor Cave would have felt well protected against carnivores during their hibernation because their sleeping places were so deep within the cave. Their strategy may well have been to avoid any conflict with hyenas and lions during hibernation.  相似文献   

2.
The life histories of ammonites and the life strategies they employed are difficult to assess without robust modern analogues but placing constraints on ammonite growth rates provides a fundamental first step to understanding this abundant, but poorly understood, fossil group. Here we interpret periodic variations in carbon and oxygen stable isotope profiles from Campanian and Maastrichtian ammonites (Baculites) as seasonally driven and use these records to determine their rate of shell precipitation. Several of these samples are housed in museums and were originally prepared using sealants for display and preservation but testing of these sealants indicated no alteration of the isotopic values of treated carbonate. Diagenetic alteration, as determined by shell microstructure, affected the preservation of isotopic signals, resulting in the loss of seasonal variation in less well‐preserved specimens, and the δ13C signal is more robust than δ18O. The periodicity of isotopic profiles from Baculites shells presented here suggest that these organisms grew at rapid rates (c. 340 mm per year), which may imply an r‐type life strategy in which the animals reach maturity quickly, spawn large quantities of progeny, and die at a young age. Because of the potential mobility of Baculites, reconstructing palaeoenvironmental conditions from these isotopic records is challenging and should be conducted cautiously. Unfortunately, well‐preserved Baculites shells much longer than 350 mm are rarely recovered, which complicates the statistical treatment of potential periodicity in isotopic profiles.  相似文献   

3.
We compared δ13C and δ15N values of muscle with fin from juvenile Chinese sturgeon (Acipenser sinensis), to evaluate the feasibility of using nonlethal (fin) as an alternative to lethal (muscle) sampling. Size and lipid effect on the relationship between fin and muscle were also investigated. Dorsal muscle (DM) and fin clip (FC) were collected from A. sinensis with different body length (120–373 mm) in the Yangtze Estuary for isotope analysis. The result showed that (1) muscle isotope values could estimated by the values of fin, from either use the regression model (δ13CDM = 0.939 × FC ? 2.577; δ15NDM = 0.737 × FC + 4.638) or constants factors (δ13CDM = δ13CFC ? 1.27; δ15NDM = δ15NFC + 0.59); (2) no size‐based relationships with δ13C and δ15N from either fin or muscle; (3) lipid extraction significantly improving the fin and muscle regression model fit for both δ13C and δ15N values. Therefore, this study support the use of nonlethal fin tissues for isotope analysis of juvenile A. sinensis, and will allow trophic studies to avoid the effect of lipid accumulation from muscle.  相似文献   

4.
5.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

6.
Objective : Development of a model for the prediction of δ13Cprotein from δ13Ccollagen and Δ13Cap‐co. Model‐generated values could, in turn, serve as “consumer” inputs for multisource mixture modeling of paleodiet. Methods : Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ13Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ13Cco and Δ13Cap‐co). Results : Regression analysis resulted in a two‐term linear model (δ13Cprotein (%) = (0.78 × δ13Cco) ? (0.58× Δ13Cap‐co) ? 4.7), possessing a high R‐value of 0.93 (r2 = 0.86, P < 0.01), and experimentally generated error terms of ±1.9% for any predicted individual value of δ13Cprotein. This model was tested using isotopic data from Formative Period individuals from northern Chile's Atacama Desert. Conclusions : The model presented here appears to hold significant potential for the prediction of the carbon isotope signature of dietary protein using only such data as is routinely generated in the course of stable isotope analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. Am J Phys Anthropol 157:694–703, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Stable isotope analysis (SIA) in combination with growth analysis using scales collected from adult chum salmon Oncorhynchus keta migrating back to Hokkaido, Japan, was performed to describe the variation of isotopic composition of carbon (δ13C) and nitrogen (δ15N) in scales and to examine relationships with growth traits [age, fork length (FL), and relative growth ratio in the last growth period [(RGRlast)]. Scale stable isotope (SI) values in 3‐ to 6‐year‐old fish were highly variable, ranging from ?17.6‰ to ?14.3‰ for δ13C and 9.5‰ to 13.4‰ for δ15N. The δ15N was positively correlated with FL, and this tendency may indicate changes in trophic level with growth. Significant effect was not detected between δ15N and RGRlast, it can be inferred that factors potentially yielding high δ15N may not necessarily result in higher growth rates. No trend found between FL and δ13C may imply that there is no clear segregation in feeding locations between the 3‐ to 6‐year groups. This study provided basic information for scale SI values of chum salmon adults and indicated that SIA using scales could be a new approach to elucidating the trophic ecology of chum salmon.  相似文献   

8.
Abstract

More than 300 cave bear bones from all over Europe have carbon and nitrogen isotopic composition that match overwhelmingly a diet based on plants, except for samples from two caves in Romania, for which high nitrogen-15 amounts have been interpreted as reflecting an omnivorous diet. This paper aims at deciphering the various factors influencing the carbon and nitrogen isotopic composition of a potential omnivorous species like cave bear, those linked to trophic levels and variations among plants and those caused by physiological factors. The comparison of European cave bears with coeval Late Pleistocene large mammals with different diets clearly shows that all the cave bear populations, including those from Romania, present isotopic values overlapping with herbivores, not with carnivores. Therefore omnivory is very unlikely for cave bears. Consumption of plants with high δ15N values, such as graminoids, forbs and possibly fungi, could explain in part the observed isotopic pattern. In addition, the variations in δ15N values through ontogeny support the hypothesis of a different hibernation pattern for the Romanian cave bears with high δ15N values. Future investigations using new isotopic approaches, especially nitrogen isotopic composition of collagen amino acids, should contribute to decipher the paleoecology of these Romanian cave bears.  相似文献   

9.
Human‐induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low‐latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high‐elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual‐resolution) and isotopic composition (decadal‐resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood 13C discrimination, resulting from increasing water use efficiency (20–60%), coinciding with rising atmospheric CO2. Changes in 13C discrimination were not followed, however, by shifts in tree ring δ18O, indicating site‐ and species‐specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming‐induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high‐elevation ecosystems to atmospheric change.  相似文献   

10.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

11.
Abstract

When studying an extinct species such as the cave bear (Ursus spelaeus ROSENMÜLLER 1794), it is possible to apply a variety of molecular biology techniques such as the study of stable isotopes or mitochondrial DNA (mDNA) to infer patterns of behaviour or physiology that would otherwise remain concealed. Throughout Europe and along time, differences in the isotopic values (δ13C and δ15N) of cave bears arise from environmental differences and the Pleistocene climatic evolution. The climate determines the hibernation length, during which the cave bears undergo a particular physiology that can be related to an increase in δ15N during climate cooling. In order to verify whether hibernation affected the isotopic values, we compared cave bears in different ontogenetic stages. The results show that perinatal values reflect the values for mothers during hibernation, while juveniles show differences in maternal investment. A previous study in the literature based on complete mitochondrial DNA sequences of several individuals collected from closely situated caves showed that each cave housed, almost exclusively, a single lineage of haplotypes. This pattern suggests extreme fidelity to the birth site, or homing behaviour, and that cave bears formed stable maternal social groups, at least for the purpose of hibernation. Studies of this type offer unexpected data on the palaeobiology of this extinct animal.  相似文献   

12.
Using both oxygen isotope ratios of leaf water (δ18OL) and cellulose (δ18OC) of Tillandsia usneoides in situ, this paper examined how short‐ and long‐term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ18Oa). During sample‐intensive field campaigns, predictions of δ18OL matched observations well using a non‐steady‐state model, but the model required data‐rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ18OL–M) matched observed δ18OL and observed δ18Oa when leaf water turnover was less than 3.5 d. Using the δ18OL–M model and weekly samples of δ18OL across two growing seasons in Florida, USA, reconstructed δ18Oa was ?12.6 ± 0.3‰. This is compared with δ18Oa of ?12.4 ± 0.2‰ resolved from the growing‐season‐weighted δ18OC. Both of these values were similar to δ18Oa in equilibrium with precipitation, ?12.9‰. δ18Oa was also reconstructed through a large‐scale transect with δ18OL and the growing‐season‐integrated δ18OC across the southeastern United States. There was considerable large‐scale variation, but there was regional, weather‐induced coherence in δ18Oa when using δ18OL. The reconstruction of δ18Oa with δ18OC generally supported the assumption of δ18Oa being in equilibrium with precipitation δ18O (δ18Oppt), but the pool of δ18Oppt with which δ18Oa was in equilibrium – growing season versus annual δ18Oppt – changed with latitude.  相似文献   

13.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness.  相似文献   

14.
Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ13C and δ15N composition of muscle tissues. Between species, δ15N compositions were similar, suggesting a similar trophic level, while the difference in δ13C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno‐benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family.  相似文献   

15.
Methane emissions from peat bogs are mitigated by methanotrophs, which live in symbiosis with peat moss (e.g. Sphagnum). Here, we investigate the influence of temperature and resultant changes in methane fluxes on Sphagnum and methanotroph‐related biomarkers, evaluating their potential as proxies in ancient bogs. A pulse‐chase experiment using 13C‐labelled methane in the field clearly showed label uptake in diploptene, a biomarker for methanotrophs, demonstrating in situ methanotrophic activity in Sphagnum under natural conditions. Peat cores containing live Sphagnum were incubated at 5, 10, 15, 20 and 25°C for two months, causing differences in net methane fluxes. The natural δ13C values of diploptene extracted from Sphagnum showed a strong correlation with temperature and methane production. The δ13C values ranged from ?34‰ at 5°C to ?41‰ at 25°C. These results are best explained by enhanced expression of the methanotrophic enzymatic isotope effect at higher methane concentrations. Hence, δ13C values of diploptene, or its diagenetic products, potentially provide a useful tool to assess methanotrophic activity in past environments. Increased methane fluxes towards Sphagnum did not affect δ13C values of bulk Sphagnum and its specific marker, the C23 n‐alkane. The concentration of methanotroph‐specific bacteriohopanepolyols (BHPs), aminobacteriohopanetetrol (aminotetrol, characteristic for type II and to a lesser extent type I methanotrophs) and aminobacteriohopanepentol (aminopentol, a marker for type I methanotrophs) showed a non‐linear response to increased methane fluxes, with relatively high abundances at 25°C compared to those at 20°C or below. Aminotetrol was more abundant than aminopentol, in contrast to similar abundances of aminotetrol and aminopentol in fresh Sphagnum. This probably indicates that type II methanotrophs became prevalent under the experimental conditions relative to type I methanotrophs. Even though BHP concentrations may not directly reflect bacterial activity, they may provide insight into the presence of different types of methanotrophs.  相似文献   

16.
Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ13C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moisture change. Leymus chinensis and Stipa spp. were sampled from Inner Mongolia along a dry‐wet transect, and some of these species were transplanted to an area with a moisture gradient. For Stipa spp., the slope of foliar δ13C and mean annual precipitation along the transect was significantly steeper than that of foliar δ13C and mean annual precipitation after the watering treatment. For L. chinensis, there was a general decreasing trend in foliar δ13C under the different (increasing) watering levels; however, its populations showed an irregular relationship between foliar δ13C and moisture origin. Therefore, support for our hypothesis was obtained from Stipa spp., but not from L. chinensis.  相似文献   

17.
The cosmopolitan, bloom‐forming diatom, Skeletonema costatum, is a prominent primary producer in coastal oceans, fixing CO2 with ribulose 1,5‐bisphosphate carboxylase/oxygenase (RubisCO) that is phylogenetically distinct from terrestrial plant RubisCO. RubisCOs are subdivided into groups based on sequence similarity of their large subunits (IA–ID, II, and III). ID is present in several major oceanic primary producers, including diatoms such as S. costatum, coccolithophores, and some dinoflagellates, and differs substantially in amino acid sequence from the well‐studied IB enzymes present in most cyanobacteria and in green algae and plants. Despite this sequence divergence, and differences in isotopic discrimination apparent in other RubisCO enzymes, stable carbon isotope compositions of diatoms and other marine phytoplankton are generally interpreted assuming enzymatic isotopic discrimination similar to spinach RubisCO (IB). To interpret phytoplankton δ13C values, S. costatum RubisCO was characterized via sequence analysis, and measurement of its KCO2 and Vmax, and degree of isotopic discrimination. The sequence of this enzyme placed it among other diatom ID RubisCOs. Michaelis‐Menten parameters were similar to other ID enzymes (KCO2 = 48.9 ± 2.8 μm ; Vmax = 165.1 ± 6.3 nmol min?1 mg?1). However, isotopic discrimination (ε = [12k/13k ? 1] × 1000) was low (18.5‰; 17.0–19.9, 95% CI) when compared to IA and IB RubisCOs (22–29‰), though not as low as ID from coccolithophore, Emiliania huxleyi (11.1‰). Variability in εvalues among RubisCOs from primary producers is likely reflected in δ13C values of oceanic biomass. Currently, δ13C variability is ascribed to physical or chemical factors (e.g. illumination, nutrient availability) and physiological responses to these factors (e.g. carbon‐concentrating mechanisms). Estimating the importance of these factors from δ13C measurements requires an accurate εvalue, and a mass‐balance model using the εvalue for S. costatum RubisCO is presented. Clearly, appropriate εvalues must be included in interpreting δ13C values of environmental samples.  相似文献   

18.
Leaf samples and tree rings formed between the mid‐1960s and mid‐1990s from sugar maple (Acer saccharum Marsh.) at Gatineau Park (45°30′ N, 75°54′ W), Quebec were analysed for δ13C. Leaf samples were collected at ground level (1–2 m above ground) at monthly intervals during the summer, whereas tree cores were extracted from the largest trees (d.b.h. > 30 cm) in the young deciduous forest in August 1998. Significant linear decreases in δ13C over time were found in foliage and tree rings, but the decrease in δ13C was significantly greater in foliage than in the wood. The apparent isotopic discrimination (Δ) of tree rings varied insignificantly around a mean of 18‰, whereas foliar Δ increased significantly from 19‰ in the 1960s to around 23‰ by the mid 1990s, likely as a result of an increasing canopy effect as the forest matured. Using models of carbon discrimination and Δ‐values of the tree rings, we calculate that the intrinsic water use efficiency of mature sugar maple has increased by approximately 4% over the study period.  相似文献   

19.
High resolution incremental isotopic analysis of the dentine from early forming teeth, especially first molars (M1s), provides a means to assess the effects of poor childhood nutrition and healthcare on individuals in an assemblage where there are no infants to study. This approach is applied to an 18th and 19th century cemetery population associated with St Saviour's Almshouse burial ground in Southwark, London, to assess whether, or how, early dietary history, including weaning age, influenced health and nutritional status. The results show a general pattern in which non‐breast milk foods were introduced before or by 6 months of age, as indicated by elevated δ15N during this period. Almost all individuals for which we also have second molar (M2) records, showed lower δ15N values from a very young age (>1 year) until approximately 8–10 years, compared to adult values. The overall results show a significant difference in δ13C (p = 0 to 4sf, F = 17.327) and a weaker statistical difference in δ15N between males and females (p = 0.019, F = 5.581). One possible cause of this is a difference in the diet of males and females early in life, or alternatively, a greater susceptibility of males to nutritional deprivation compared to females. The latter argument is strengthened by a significant difference in the incidence of enamel hypoplasia between the males and females, with 7.7% of male teeth showing defects, compared to 3.9% of females. Am J Phys Anthropol 154:585–593, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Teeth of odontocetes accumulate annual dentinal growth layer groups (GLGs) that record isotope ratios, which reflect the time of their synthesis. Collectively, they provide lifetime records of individual feeding patterns from which life history traits can be inferred. We subsampled the prenatal dentin and postnatal GLGs in Risso's dolphins (Grampus griseus) (n = 65) that stranded or were collected as bycatch in Taiwan (1994–2014) and analyzed them for δ15N and δ13C. Age‐specific δ15N and δ13C values were corrected for effects of calendar year, stranding site, C/N, and sex. δ15N values were higher in prenatal layers (14.94‰ ± 0.74‰) than in adult female GLGs (12.58‰ ± 0.20‰), suggesting fetal enrichment during gestation. Decreasing δ15N values in early GLGs suggested changes in dietary protein sources during transition to complete weaning. Weaning age was earlier in males (1.09 yr) than in females (1.81 yr). Significant differences in δ15N values between weaned males and females suggest potential sexual segregation in feeding habits. δ13C values increased from the prenatal to the 4th GLG by ~1.0‰, indicative of a diet shift from 13C‐depleted milk to prey items. Our results provide novel insights into the sex‐specific ontogenetic changes in feeding patterns and some life history traits of Risso's dolphins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号