首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decomposing variation in juvenile recruitment is a key component of understanding population dynamics for partially migratory ungulates. We investigated reproductive parameters of adult female elk (Cervus canadensis) with calves at heel, and survivorship, cause-specific mortality, and intrinsic and extrinsic factors affecting risk of mortality for calves in a partially migratory elk population from 2013–2016 in Alberta, Canada. Elk calves born to resident mothers had 45% lower survivorship on average compared to migrant calves (0.24 vs. 0.69) and nearly twice the mortality rate (0.37 vs. 0.19) from bears (Ursus spp.), the dominant source of mortality. Contrary to our predictions, we found that increasing levels of maternal ingesta-free body fat were associated with increasing risk of calf mortality, indicating predation may have overwhelmed nutritional effects. We found no evidence that timing of calf birth or birth weight differed between migratory tactics or influenced mortality risk. We found that as percentage of cut forest increased, risk of calf mortality marginally decreased, which benefited migrant elk that were exposed to more clear-cuts compared to residents. Exposure to bear predation risk was unimportant during the hiding phase (≤10 days after birth) for either migratory tactic, presumably because neonatal hiding behavior reduced vulnerability. In contrast, bear predation risk was important for mortality risk after 10 days in age, especially for resident elk calves, which were exposed to higher bear predation risk compared to migrants. We conclude that relative differences in bear predation between migratory tactics are contributing to the dynamics of partial migration in this population through additive effects on calf mortality. Thus, wildlife managers should anticipate that recovering grizzly bear (U. arctos) populations may substantially lower elk recruitment through effects on summer calf survival, especially in areas with diverse carnivore assemblages.  相似文献   

2.
Army ants are among the top arthropod predators and considered keystone species in tropical ecosystems. During daily mass raids with many thousand workers, army ants hunt live prey, likely exerting strong top‐down control on prey species. Many tropical sites exhibit a high army ant species diversity (>20 species), suggesting that sympatric species partition the available prey niches. However, whether and to what extent this is achieved has not been intensively studied yet. We therefore conducted a large‐scale diet survey of a community of surface‐raiding army ants at La Selva Biological Station in Costa Rica. We systematically collected 3,262 prey items from eleven army ant species (genera Eciton, Nomamyrmex and Neivamyrmex). Prey items were classified as ant prey or non‐ant prey. The prey nearly exclusively consisted of other ants (98%), and most booty was ant brood (87%). Using morphological characters and DNA barcoding, we identified a total of 1,103 ant prey specimens to the species level. One hundred twenty‐nine ant species were detected among the army ant prey, representing about 30% of the known local ant diversity. Using weighted bipartite network analyses, we show that prey specialization in army ants is unexpectedly high and prey niche overlap very small. Besides food niche differentiation, we uncovered a spatiotemporal niche differentiation in army ant raid activity. We discuss competition‐driven multidimensional niche differentiation and predator–prey arms races as possible mechanisms underlying prey specialization in army ants. By combining systematic prey sampling with species‐level prey identification and network analyses, our integrative approach can guide future research by portraying how predator–prey interactions in complex communities can be reliably studied, even in cases where morphological prey identification is infeasible.  相似文献   

3.
Partial migration is widespread in ungulates, yet few studies have assessed demographic mechanisms for how these alternative strategies are maintained in populations. Over the past two decades the number of resident individuals of the Ya Ha Tinda elk herd near Banff National Park has been increasing proportionally despite an overall population decline. We compared demographic rates of migrant and resident elk to test for demographic mechanisms partial migration. We determined adult female survival for 132 elk, pregnancy rates for 150 female elk, and elk calf survival for 79 calves. Population vital rates were combined in Leslie‐matrix models to estimate demographic fitness, which we defined as the migration strategy‐specific population growth rate. We also tested for differences in factors influencing risk of mortality between migratory strategies for adult females using Cox‐proportional hazards regression and time‐varying covariates of exposure to forage biomass, wolf predation risk, and group size. Despite higher pregnancy rates and winter calf weights associated with higher forage quality, survival of migrant adult females and calves were lower than resident elk. Resident elk traded high quality food to reduce predation risk by selecting areas close to human activity, and by living in group sizes 20% larger than migrants. Thus, residents experienced higher adult female survival and calf survival, but lower pregnancy and calf weights. Cause‐specific mortality of migrants was dominated by wolf and grizzly bear mortality, whereas resident mortality was dominated by human hunting. Demographic differences translated into slightly higher (2–3%), but non‐significant, resident population growth rate compared to migrant elk, suggesting demographic balancing between resident strategies during our study. Despite statistical equivalence, our results are also consistent with slow long‐term declines in migrants because of high predation because of higher wolf‐caused mortality in migrants. These results emphasize that migrants and residents will make different tradeoffs between forage and risk may affect the demographic balance of partially migratory populations, which may explain recent declines in migratory behavior in many ungulate populations around the world.  相似文献   

4.
In Europe, lowland wet grasslands have become increasingly fragmented, and populations of waders in these fragments are subject to unsustainably high levels of nest predation. Patches of taller vegetation in these landscapes can support small mammals, which are the main source of prey for many predators. Providing such patches of habitat could potentially reduce levels of nest predation if predators preferentially target small mammals. However, predator attraction to patches of taller vegetation for foraging, shelter, perching and/or nesting could also result in local increases in predation rates, as a consequence of increased predator densities or spill‐over foraging into the surrounding area. Here we assess the influence of taller vegetation on wader nest predation rates, and the feasibility of managing vegetation structure to alter predator impacts. Between 2005 and 2011, the nest distribution and hatching success of Northern Lapwings Vanellus vanellus, which nest in the open, and Common Redshanks Tringa totanus, which conceal their nests in vegetation, were measured on a 487‐ha area of wet grassland in eastern England that is primarily managed for breeding waders. Predation rates of Lapwing nests increased significantly with distance from patches of taller vegetation, and decreased with increasing area of taller vegetation within 1 km of the nest, whereas neither variable influenced Redshank nest predation probability. These findings suggest that the distribution and activity of nest predators in lowland wet grassland landscapes may be influenced by the presence and distribution of areas of taller vegetation. For Lapwings at least, there may therefore be scope for landscape‐scale management of vegetation structure to influence levels of predation in these habitats.  相似文献   

5.
6.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

7.
8.
To determine the predators of 100 mm total length hatchery‐reared juvenile Japanese flounder Paralichthys olivaceus, fishes and crabs were collected using gillnets and a small trawl net off the coast of Fukushima Prefecture, Japan. Predation on juvenile P. olivaceus by older conspecifics, the snailfish Liparis tanakai, ocellate spot skate Okamejei kenojei and the swimming crab Ovalipes punctatus, was detected based on analogical observation and molecular techniques. These predators are nocturnal feeders except for P. olivaceus. Liparis tanakai with body sizes large enough to consume juveniles only appeared in winter, whereas the large O. punctatus was abundant in early summer and in late autumn. Such seasonal variation in predator abundance indicates that the release season can be optimized for reducing predation mortality.  相似文献   

9.
Kadri Moks  Vallo Tilgar 《Ibis》2014,156(2):452-456
In birds, little is known about how the presence of predators alters parental food distribution decisions among nestlings. We found that experimentally increasing perceived predation risk changed parental care in female but not in male Great Tits Parus major. Females fed the lightest and average nestlings at similar rates under control conditions when predation risk was not manipulated but ignored the lightest nestling under increased perceived predation risk. Moreover, females reduced the duration of nest visits greatly after encountering a model predator, suggesting that the perception of predators may facilitate brood reduction mechanisms.  相似文献   

10.
The effect of predation on native fish by introduced species in the San Francisco Estuary–Delta (SFE) has not been thoroughly studied despite its potential to impact species abundances. Species‐specific quantitative PCR (qPCR) is an accurate method for identifying species from exogenous DNA samples. Quantitative PCR assays can be used for detecting prey in gut contents or faeces, discriminating between cryptic species, or detecting rare aquatic species. We designed ten TaqMan qPCR assays for fish species from the SFE watershed most likely to be affected by non‐native piscivores. The assays designed are highly specific, producing no signal from co‐occurring or related species, and sensitive, with a limit of detection between 3.2 and 0.013 pg/μL of target DNA. These assays will be used in conjunction with a high‐throughput qPCR platform to compare predation rates between native and non‐native piscivores and assess the impacts of predation in the system.  相似文献   

11.
The best documented method to decrease predation of breeding seabirds by gulls are culling regimes; however, studies on the effectiveness of this method show ambiguous results. Here we tested an alternative method, using bamboo canes erected in four breeding sites of Arctic Tern Sterna paradisaea as a gull‐deterrent. Although we found fewer predation attempts in the caned areas than in the control areas, canes did not reduce the probability of predation success per attempt. This pilot study documents that the use of canes as a conservation strategy to reduce gull predation is promising, economic and simple, and is thus probably a versatile tool for conservation managers.  相似文献   

12.
13.
  1. Population responses to extrinsic mortality can yield no change in the number of survivors (compensation) or an increase in the number of survivors (overcompensation) when the population is regulated by negative density‐dependence. This intriguing response has been the subject of theoretical studies, but few experiments have explored how the source of extrinsic mortality affects the response.
  2. This study tests abilities of three functionally diverse predators, alone and combined, to induce (over)compensation of a prey population. Larval Aedes aegypti (Diptera: Culicidae) were exposed to predation by Mesocyclops longisetus (Crustacea: Copepoda), Anopheles barberi (Diptera: Culicidae), Corethrella appendiculata (Diptera: Corethrellidae), all three in a substitutive design, or no predation.
  3. Predator treatment had no significant effect on the total number of adult survivors, nor on numbers of surviving males or females. The female development rate and a composite index of performance (r′) were greater with predation relative to no‐predator control. No differences were detected between diverse and single‐species predator treatments.
  4. Sensitivity analyses indicated predation effects on the number of female adults produced, despite not being affected significantly, was the largest contributing factor to significant treatment effects on the demographic index r′. While predation did not significantly increase the production of adults, it did release survivors from density‐dependent effects sufficiently to increase population performance. This study provides an empirical test of mechanisms by which predation may yield positive mortality effects on victim populations, a phenomenon predicted to occur across many taxa and food webs.
  相似文献   

14.
It is well‐known that prey species often face trade‐offs between defense against predation and competitiveness, enabling predator‐mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre‐attack (e.g., camouflage) and post‐attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre‐ or post‐attack defended paying costs either by a higher half‐saturation constant for resource uptake or a lower maximum growth rate. We show that post‐attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre‐attack defenses by interfering with the predator's functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half‐saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator‐induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom‐up and top‐down control of the prey community.  相似文献   

15.
Size structure of organisms at logarithmic scale (i.e. size spectrum) can often be described by a linear function with a negative slope; however, substantial deviations from linearity have often been found in natural systems. Theoretical studies suggest that greater nonlinearity in community size spectrum is associated with high predator–prey size ratios but low predator–prey abundance ratios; however, empirical evaluation of the effects of predator–prey interactions on nonlinear structures remains scarce. Here, we aim to empirically explore the pattern of the size‐specific residuals (i.e. deviations from the linear regression between the logarithmic fish abundance and the logarithmic mean fish size) by using size spectra of fish communities in 74 German lakes. We found that nonlinearity was strong in lakes with high predator–prey abundance ratios but at low predator–prey size ratios. More specifically, our results suggest that only large predators, even if occurring in low abundances, can control the density of prey fishes in a broad range of size classes in a community and thus promote linearity in the size spectrum. In turn, the lack of large predator fishes may cause high abundances of fish in intermediate size classes, resulting in nonlinear size spectra in these lakes. Moreover, these lakes were characterized by a more intense human use including high fishing pressure and high total phosphorus concentrations, which have negative impacts on the abundance of large, predatory fish. Our findings indicate that nonlinear size spectra may reflect dynamical processes potentially caused by predator–prey interactions. This opens a new perspective in the research on size spectrum, and can be relevant to further quantify the efficiency of energy transfer in aquatic food webs.  相似文献   

16.
Harvesting wild animals may exert size‐independent selection pressures on a range of morphological, life history, and behavioral traits. Most work so far has focused on selection pressures on life history traits and body size as morphological trait. We studied here how recreational fishing selects for morphological traits related to body shape, which may correlate with underlying swimming behavior. Using landmark‐based geometric morphometrics, we found consistent recreational fishing‐induced selection pressures on body shape in two recreationally exploited marine fish species. We show that individuals with larger‐sized mouths and more streamlined and elongated bodies were more vulnerable to passively operated hook‐and‐line fishing independent of the individual's body size or condition. While the greater vulnerability of individuals with larger mouth gapes can be explained by the direct physical interaction with hooks, selection against streamlined and elongated individuals could either involve a specific foraging mode or relate to underlying elevated swimming behavior. Harvesting using passive gear is common around the globe, and thus, size‐independent selection on body shape is expected to be widespread potentially leaving behind individuals with smaller oral gapes and more compact bodies. This might have repercussions for food webs by altering foraging and predation.  相似文献   

17.
1. Behavioural adaptations to avoid and evade predators are common. Many studies have investigated population divergence in response to changes in predation regime within species, but studies exploring interspecific patterns are scant. Studies on interspecific divergence can infer common outcomes from evolutionary processes and highlight the role of environmental constraints in shaping species traits. 2. Species of the dragonfly genus Leucorrhinia underwent well‐studied shifts from habitats being dominated by predatory fish (fish lakes) to habitat being dominated by predatory invertebrates (dragonfly lakes). This change in top predators resulted in a set of adaptive trait modifications in response to the different hunting styles of both predator types: whereas predatory fish actively search and pursue prey, invertebrate predator follow a sit‐and‐wait strategy, not pursuing prey. 3. Here it is shown that the habitat shift‐related change in selection regime on larval Leucorrhinia caused species in dragonfly lakes to evolve increased larval foraging and activity, and results suggest that they lost the ability to recognise predatory fish. 4. The results of the present study highlight the impact of predators on behavioural trait diversification with habitat‐specific predation regimes selecting for distinct behavioural expression.  相似文献   

18.
Bacteria that are introduced into aquatic habitats face a low substrate environment interspersed with rare productive ‘hotspots’, as well as high protistan grazing. Whereas the former condition should select for growth performance, the latter should favour traits that reduce predation mortality, such as the formation of large cell aggregates. However, protected morphotypes often convey a growth disadvantage, and bacteria thus face a trade‐off between investing in growth or defence traits. We set up an evolutionary experiment with the freshwater isolate Sphingobium sp. strain Z007 that conditionally increases aggregate formation in supernatants from a predator–prey coculture. We hypothesized that low substrate levels would favour growth performance and reduce the aggregated subpopulation, but that the concomitant presence of a flagellate predator might conserve the defence trait. After 26 (1‐week) growth cycles either with (P+) or without (P?) predators, bacteria had evolved into strikingly different phenotypes. Strains from P? had low numbers of aggregates and increased growth yield, both at the original rich growth conditions and on various single carbon sources. By contrast, isolates from the P+ treatment formed elevated proportions of defence morphotypes, but exhibited lower growth yield and metabolic versatility. Moreover, the evolved strains from both treatments had lost phenotypic plasticity of aggregate formation. In summary, the (transient) residence of bacteria at oligotrophic conditions may promote a facultative oligotrophic life style, which is advantageous for survival in aquatic habitats. However, the investment in defence against predation mortality may constrain microbial adaptation to the abiotic environment.  相似文献   

19.
20.
The Lower Keys marsh rabbit (Sylvilagus palustris hefneri) is one of many endangered endemic species of the Florida Keys. The main threats are habitat loss and fragmentation from sea‐level rise, development, and habitat succession. Exotic predators such as free‐ranging domestic cats (Felis catus) pose an additional threat to these endangered small mammals. Management strategies have focused on habitat restoration and exotic predator control. However, the effectiveness of predator removal and the effects of anthropogenic habitat modifications and restoration have not been evaluated. Between 2013 and 2015, we used camera traps to survey marsh rabbits and free‐ranging cats at 84 sites in the National Key Deer Refuge, Big Pine Key, Florida, USA. We used dynamic occupancy models to determine factors associated with marsh rabbit occurrence, colonization, extinction, and the co‐occurrence of marsh rabbits and cats during a period of predator removal. Rabbit occurrence was positively related to freshwater habitat and patch size, but was negatively related to the number of individual cats detected at each site. Furthermore, marsh rabbit colonization was negatively associated with relative increases in the number of individual cats at each site between survey years. Cat occurrence was negatively associated with increasing distance from human developments. The probability of cat site extinction was positively related to a 2‐year trapping effort, indicating that predator removal reduced the cat population. Dynamic co‐occurrence models suggested that cats and marsh rabbits co‐occur less frequently than expected under random conditions, whereas co‐detections were site and survey‐specific. Rabbit site extinction and colonization were not strongly conditional on cat presence, but corresponded with a negative association. Our results suggest that while rabbits can colonize and persist at sites where cats occur, it is the number of individual cats at a site that more strongly influences rabbit occupancy and colonization. These findings indicate that continued predator management would likely benefit endangered small mammals as they recolonize restored habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号