首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Dispersal is one of the strategies for organisms to deal with climate change and habitat degradation. Therefore, investigating the effects of dispersal evolution on natural populations is of considerable interest to ecologists and conservation biologists. Although it is known that dispersal itself can evolve due to selection, the behavioral, life‐history and metabolic consequences of dispersal evolution are not well understood. Here, we explore these issues by subjecting four outbred laboratory populations of Drosophila melanogaster to selection for increased dispersal. The dispersal‐selected populations had similar values of body size, fecundity, and longevity as the nonselected lines (controls), but evolved significantly greater locomotor activity, exploratory tendency, and aggression. Untargeted metabolomic fingerprinting through NMR spectroscopy suggested that the selected flies evolved elevated cellular respiration characterized by greater amounts of glucose, AMP, and NAD. Concurrent evolution of higher level of Octopamine and other neurotransmitters indicate a possible mechanism for the behavioral changes in the selected lines. We discuss the generalizability of our findings in the context of observations from natural populations. To the best of our knowledge, this is the first report of the evolution of metabolome due to selection for dispersal and its connection to dispersal syndrome evolution.  相似文献   

2.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation or other anthropogenic interventions will lead to spatially correlated extinction patterns. Under such conditions natural selection is thought to lead to more long‐distance dispersal, but this theoretical prediction has not yet been verified empirically. We test this prediction in experimental spatially structured populations of the spider mite Tetranychus urticae and supplement these empirical results with insights from an individual‐based evolutionary model. We demonstrate that the spatial correlation of local extinctions changes the entire distribution of dispersal distances (dispersal kernel) and selects for overall less emigration but more long‐distance dispersal.  相似文献   

3.
Arnaud Monty  Grégory Mahy 《Oikos》2010,119(10):1563-1570
In introduced organisms, dispersal propensity is expected to increase during range expansion. This prediction is based on the assumption that phenotypic plasticity is low compared to genetic diversity, and an increase in dispersal can be counteracted by the Allee effect. Empirical evidence in support of these hypotheses is however lacking. The present study tested for evidence of differentiation in dispersal‐related traits and the Allee effect in the wind‐dispersed invasive Senecio inaequidens (Asteraceae). We collected capitula from individuals in ten field populations, along an invasion route including the original introduction site in southern France. In addition, we conducted a common garden experiment from field‐collected seeds and obtained capitula from individuals representing the same ten field populations. We analysed phenotypic variation in dispersal traits between field and common garden environments as a function of the distance between populations and the introduction site. Our results revealed low levels of phenotypic differentiation among populations. However, significant clinal variation in dispersal traits was demonstrated in common garden plants representing the invasion route. In field populations, similar trends in dispersal‐related traits and evidence of an Allee effect were not detected. In part, our results supported expectations of increased dispersal capacity with range expansion, and emphasized the contribution of phenotypic plasticity under natural conditions.  相似文献   

4.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

5.
Mobility varies strongly between and within species, reflecting different dispersal strategies. Within species, such differences can imply suites of traits associated in syndromes. Different syndrome structures have been found within species among populations differing in the selective pressures they are exposed to. Similarly, we expect species differing in mobility to show different syndrome structures in response to similar selective pressures such as landscape fragmentation. Using butterflies originating from the same fragmented landscape, we investigated the differences in mobility syndrome between four common butterflies (Pyronia tithonus, Pararge aegeria Maniola jurtina, Pieris rapae) known to differ in their mobility. We expected individuals from the less mobile species to display a resident strategy because of high dispersal cost in this fragmented landscape, and individuals from the more mobile species to display a larger range of movement strategies. Moreover, as syndromes can only be detected whenever individuals differ in their dispersal strategies, we expected mobility syndromes to be observable only in populations where dispersal polymorphism is maintained. We thus expected stronger correlations between mobility‐related traits in more mobile species. Using three mobility tests in controlled conditions designed to measure different components of mobility, we showed that mobility‐related traits were indeed correlated only in the most mobile species. The absence of correlation in the less mobile species may be explained by a low variation in movement strategies, dispersal being counter‐selected.  相似文献   

6.
In many organisms, dispersal varies with the local population density. Such patterns of density-dependent dispersal (DDD) are expected to shape the dynamics, spatial spread, and invasiveness of populations. Despite their ecological importance, empirical evidence for the evolution of DDD patterns remains extremely scarce. This is especially relevant because rapid evolution of dispersal traits has now been empirically confirmed in several taxa. Changes in DDD of dispersing populations could help clarify not only the role of DDD in dispersal evolution, but also the possible pattern of subsequent range expansion. Here, we investigate the relationship between dispersal evolution and DDD using a long-term experimental evolution study on Drosophila melanogaster. We compared the DDD patterns of four dispersal-selected populations and their non-selected controls. The control populations showed negative DDD, which was stronger in females than in males. In contrast, the dispersal-selected populations showed DDD, where neither males nor females exhibited DDD. We compare our results with previous evolutionary predictions that focused largely on positive DDD, and highlight how the direction of evolutionary change depends on the initial DDD pattern of a population. Finally, we discuss the implications of DDD evolution for spatial ecology and evolution.  相似文献   

7.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

8.
A number of studies have documented the evolution of female resistance to mate‐harm in response to the alteration of intersexual conflict in the populations. However, the life‐history consequence of such evolution is still a subject of debate. In this study, we subjected replicate populations of Drosophila melanogaster to different levels of sexual conflict (generated by altering the operational sex ratio) for over 45 generations. Our results suggest that females from populations experiencing higher level of intersexual conflict evolved increased resistance to mate‐harm, in terms of both longevity and progeny production. Females from the populations with low conflict were significantly heavier at eclosion and were more susceptible to mate‐harm in terms of progeny production under continuous exposure to the males. However, these females produced more progeny upon single mating and had significantly higher longevity in absence of any male exposure—a potential evidence of trade‐offs between resistance‐related traits and other life‐history traits, such as fecundity and longevity. We also report tentative evidence, suggesting an increased male cost of interacting with more resistant females.  相似文献   

9.
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer–resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer–resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities.  相似文献   

10.
Increased dispersal propensity often evolves on expanding range edges due to the Olympic Village effect, which involves the fastest and fittest finding themselves together in the same place at the same time, mating, and giving rise to like individuals. But what happens after the range's leading edge has passed and the games are over? Although empirical studies indicate that dispersal propensity attenuates following range expansion, hypotheses about the mechanisms driving this attenuation have not been clearly articulated or tested. Here, we used a simple model of the spatiotemporal dynamics of two phenotypes, one fast and the other slow, to propose that dispersal attenuation beyond preexpansion levels is only possible in the presence of trade‐offs between dispersal and life‐history traits. The Olympic Village effect ensures that fast dispersers preempt locations far from the range's previous limits. When trade‐offs are absent, this preemptive spatial advantage has a lasting impact, with highly dispersive individuals attaining equilibrium frequencies that are strictly higher than their introduction frequencies. When trade‐offs are present, dispersal propensity decays rapidly at all locations. Our model's results about the postcolonization trajectory of dispersal evolution are clear and, in principle, should be observable in field studies. We conclude that empirical observations of postcolonization dispersal attenuation offer a novel way to detect the existence of otherwise elusive trade‐offs between dispersal and life‐history traits.  相似文献   

11.
Life history traits are critical components of fitness and frequently reflect adaptive responses to environmental pressures. However, few genes that contribute to natural life history variation have been identified. Insulin signalling mediates the determination of life history traits in many organisms, and single gene manipulation in Drosophila melanogaster suggests that individual genes in the pathway have the potential to produce major effects on these quantitative traits. We evaluated allelic variation at two insulin signalling genes, the Insulin‐like Receptor (InR) and its substrate, chico, in natural populations of D. melanogaster. We found different patterns of variation: InR shows evidence of positive selection and clines in allele frequency across latitude; chico exhibits neutral patterns of evolution. The clinal patterns at InR are replicated between North America and Australia, showing striking similarity in the distribution of specific alleles and the rate at which allele frequencies change across latitude. Moreover, we identified a polymorphism at InR that appears to be functionally significant and consistent with hypothetical patterns of selection across geography. This polymorphism provides new characterization of genic regions of functionality within InR, and is likely a component in a suite of genes and traits that respond adaptively to climatic variation.  相似文献   

12.
In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1‐ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside‐plot parents was higher for low‐density than for high‐density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine‐scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low‐density populations vs. higher diversity of contributing parents in high‐density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.  相似文献   

13.
Dispersal is a key process for understanding the persistence of populations as well as the capacity of organisms to respond to environmental change. Therefore, understanding factors that may facilitate or constrain the evolution of dispersal is of crucial interest. Assessments of phenotypic variation in various behavioural, physiological and morphological traits related to insect dispersal and flight performance are common, yet very little is known about the genetic associations among these traits. We have used experiments on the butterfly Bicyclus anynana to estimate genetic variation and covariation in seven behavioural, physiological and morphological traits related to flight potential and hence dispersal. Our goal was to characterize the heritabilities and genetic correlations among these traits and thus to understand more about the evolution of dispersal‐related life‐history syndromes in butterflies. Using a version of the animal model, we showed that all of the traits varied between the sexes, and most were either positively or negatively (phenotypically and/or genetically) correlated with body size. Heritable variation was present in most traits, with the highest heritabilities estimated for body mass and thorax ratio. The variance in flight activity among multiple measurements for the same individual was high even after controlling for the prevailing environmental conditions, indicating the importance of behavioural switching and/or inherent randomness associated with this type of movement. A number of dispersal‐related traits showed phenotypic correlations among one another, but only a few of these were associated with significant genetic correlations indicating that covariances between these traits in Bicyclus anynana are mainly environmentally induced.  相似文献   

14.
Dispersal is a key life‐history trait governing the response of individuals, populations and species to changing environmental conditions. In the context of global change, it is therefore essential to better understand the respective role of condition‐, phenotype‐ and genetic‐dependent drivers of dispersal behaviour. Although the importance of immune function and pathogen infestation in determining patterns of dispersal is increasingly recognised, no study to our knowledge has yet investigated the influence of immune gene variability on dispersal behaviour. Here, we filled this knowledge gap by assessing whether individual heterozygosity at five immune gene loci (one from the Major histocompatibility complex and four from encoding Toll‐like receptors) influences roe deer natal dispersal. We found that dispersal propensity was affected by immune gene diversity, suggesting potential pathogen‐mediated selection through over‐dominance. However, the direction of this effect differed between high and low quality individuals, suggesting that dispersal propensity is driven by two different mechanisms. In support of the condition‐dependent dispersal hypothesis, dispersal propensity increased with increasing body mass and, among high quality individuals only (standardized body mass > 18 kg), with increasing immune gene diversity. However, among poor quality individuals, we observed the opposite pattern such that dispersal propensity was higher for individuals with lower immune gene diversity. We suggest that these poor quality individuals expressed an emergency dispersal tactic in an attempt to escape a heavily infested environment associated with poor fitness prospects. Our results have potentially important consequences in terms of population genetics and demography, as well as host–pathogen evolution.  相似文献   

15.
Mating speed and copulation duration respond rapidly to laboratory selection in Drosophila melanogaster Meigen (Diptera: Drosophilidae), but there is a lack of data on the evolutionary response to natural selection in the wild. Further, it is not clear whether body melanization and mating behavior are correlated traits. Accordingly, we tested whether variation in body color impacts on mating latency, copulation duration, and fecundity in latitudinal populations of D. melanogaster. We observed geographical variation (cline) for mating propensity, i.e., mating speed as well as copulation duration increased along latitude. Phenotypic plastic responses for body melanization at 17 and 25 °C also showed significant correlations with mating latency and copulation duration. Within‐population analysis based on assorted dark and light flies of five geographical populations showed significant positive correlations of copulation duration and fecundity with body melanization. To assess the role of males and/or females on mating speed and copulation duration, we used atypical body color strains (i.e., dark and light males of D. melanogaster) for no‐choice mating tests. Our data showed a major influence of males for copulation duration and of females for mating speed. Furthermore, a difference in impact of body melanization on mating speed and copulation duration was demonstrated between species, i.e., low melanization in Drosophila ananassae Doleschall is correlated with lower mating speed and shorter copulation duration than in D. melanogaster. Geographical changes in mating propensity were significantly correlated with body melanization at three levels, i.e., within and between populations and between species. Thus, we have shown that a relationship exists between body melanization and mating success. Further, we found seasonal changes in temperature and humidity to confer selection pressures on mating‐related traits.  相似文献   

16.
Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life‐history traits—lifespan and reproduction. A prediction from the fitness‐associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk‐prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high‐dispersal lines dispersed more than females from low‐dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age‐specific reproductive effort between high‐ and low‐dispersal females. Rather, reproductive output of high‐dispersal females was consistently reduced. We argue that our data provide support for the fitness‐associated dispersal hypothesis.  相似文献   

17.
Recent climate change is recognized as a main cause of shifts in geographical distributions of species. The impacts of climate change may be aggravated by habitat fragmentation, causing regional or large scale extinctions. However, we propose that climate change also may diminish the effects of fragmentation by enhancing flight behaviour and dispersal of ectothermic species like butterflies. We show that under weather conditions associated with anticipated climate change, behavioural components of dispersal of butterflies are enhanced, and colonization frequencies increase. In a field study, we recorded flight behaviour and mobility of four butterfly species: two habitat generalists (Coenonympha pamphilus; Maniola jurtina) and two specialists (Melitaea athalia; Plebejus argus), under different weather conditions. Flying bout duration generally increased with temperature and decreased with cloudiness. Proportion of time spent flying decreased with cloudiness. Net displacement generally increased with temperature. When butterflies fly longer, start flying more readily and fly over longer distances, we expect dispersal propensity to increase. Monitoring data showed that colonization frequencies moreover increased with temperature and radiation and decreased with cloudiness. Increased dispersal propensity at local scale might therefore lower the impact of habitat fragmentation on the distribution at a regional scale. Synergetic effects of climate change and habitat fragmentation on population dynamics and species distributions might therefore appear to be more complex than previously assumed.  相似文献   

18.
Abstract 1. Species would be expected to shift northwards in response to current climate warming, but many are failing to do so because of fragmentation of breeding habitats. Dispersal is important for colonisation and an individual‐based spatially explicit model was developed to investigate impacts of habitat availability on the evolution of dispersal in expanding populations. Model output was compared with field data from the speckled wood butterfly Pararge aegeria, which currently is expanding its range in Britain. 2. During range expansion, models simulated positive linear relationships between dispersal and distance from the seed location. This pattern was observed regardless of quantity (100% to 10% habitat availability) or distribution (random vs. gradient distribution) of habitat, although higher dispersal evolved at expanding range margins in landscapes with greater quantity of habitat and in gradient landscapes. Increased dispersal was no longer evident in any landscape once populations had reached equilibrium; dispersal values returned to those of seed populations. However, in landscapes with the least quantity of habitat, reduced dispersal (below that of seed populations) was observed at equilibrium. 3. Evolutionary changes in adult flight morphology were examined in six populations of P. aegeria along a transect from the distribution core to an expanding range margin in England (spanning a latitudinal distance of >200 km). Empirical data were in agreement with model output and showed increased dispersal ability (larger and broader thoraxes, smaller abdomens, higher wing aspect ratios) with increasing distance from the distribution core. Increased dispersal ability was evident in populations from areas colonised >30 years previously, although dispersal changes were generally evident only in females. 4. Evolutionary increases in dispersal ability in expanding populations may help species track future climate changes and counteract impacts of habitat fragmentation by promoting colonisation. However, at the highest levels of habitat loss, increased dispersal was less evident during expansion and reduced dispersal was observed at equilibrium indicating that, for many species, continued habitat fragmentation is likely to outweigh any benefits from dispersal.  相似文献   

19.
Habitat loss has led to fragmentation of populations of many invertebrates, but social hymenopterans may be particularly sensitive to habitat fragmentation due to their low effective population sizes. The impacts of fragmentation depend strongly on dispersal abilities, but these are difficult to quantify. Here, we quantify and compare dispersal abilities of two bumblebee species, Bombus muscorum and Bombus jonellus , in a model island system. We use microsatellites to investigate population genetic structuring, dispersal and spatial patterns in genetic diversity. Populations of both species showed significant structuring, and isolation by distance, but this was markedly greater in B. muscorum (θ = 0.13) than in B. jonellus (θ = 0.034). This difference could reflect a higher effective population size in B. jonellus compared to B. muscorum , but this is not consistent with the observed abundance of the two species. We argue that it is more likely that B. jonellus has a higher propensity to disperse than B. muscorum . This will influence their relative susceptibility to habitat fragmentation and may in part explain differential declines of mainland populations of these and other bumblebee species.  相似文献   

20.
Although a growing number of studies have documented the evolution of adult dispersal‐related traits at the range edge of poleward‐expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight‐related traits) between replicated core and edge populations of the poleward‐moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade‐offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude‐specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward‐expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco‐evolutionary dynamics at the expansion front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号