首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knaust, D. 2010: Remarkably preserved benthic organisms and their traces from a Middle Triassic (Muschelkalk) mud flat. Lethaia, Vol. 43, pp. 344–356. A new Fossil‐Lagerstätte is reported from the Middle Triassic of Germany, preserving Foraminifera, Nematoda, Platyhelminthes, Nemertea, Annelida and a range of Arthropoda together with their traces. This is the oldest fossil record of free‐living nematodes and turbellarians, and the first occurrence of nemerteans in the Mesozoic. The rare preservation of the benthic associations together with their traces is unique; especially the abundant occurrence of different phyla as meiofauna (organisms with shortest dimension between 0.06 and 1 mm) provides an insight into the palaeoecological conditions of a 240‐Ma‐old muddy tidal flat. The preservation of benthic animals at the termination of their traces offers the exclusive opportunity to assign producers to the trace fossils. The results show that the discussed phyla were already established in the early Mesozoic in a similar diversity and composition as in modern analogues. The new Fossil‐Lagerstätte has the potential to prove a number of soft‐bodied taxa immediately after the end‐Permian mass extinction, which has wide‐ranging implications for phylogenetic interpretations. □Benthos, soft‐bodied organisms, Fossil‐Lagerstätte, Muschelkalk, trace fossils, Triassic.  相似文献   

2.
For the first time, fossils of unquestionable eurypterid origin are documented from the renowned Lower Devonian Hunsrück Slate Lagerstätte in southwestern Germany. The gnathobase of a coxal plate and a body segment can be attributed to pterygotid eurypterids, probably to Jaekelopterus rhenaniae. These body parts from the Hunsrück Slate once more confirm the extraordinary large size that could be attained by this Rhenish eurypterid. Based on the usual occurrence in marine–terrestrial transitional facies elsewhere in the Rhenish Devonian, rareness in the Hunsrück Slate, and poor preservation, the Hunsrück Slate pterygotid remains are most probably allochthonous, and eurypterids are considered nongenuine elements of the ‘Hunsrück Slate biota.  相似文献   

3.
A diverse assemblage of unusually well-preserved marine, euryhaline, freshwater, and terrestrial fossils (invertebrates, vertebrates, and plants) occurs within an Upper Carboniferous (Stephanian) Konservat Fossil-Lagerstätte near Hamilton, Kansas, USA. The Lagerstätte occurs within a paleovalley that was incised into the surrounding Carboniferous cyclothemic sequence during a time of low sea level, and was then filled-in during a subsequent transgression. The stratigraphically lowest and most voluminous facies within the valley is a cross-bedded, polymictic limestone conglomerate that contains caliche clasts and charcoal fragments as well as some normal-marine fossils apparently in situ. The origin of the conglomerate is enigmatic, but it was probably deposited by a migrating tidal channel. Overlying and interbedded with the conglomerate is an ostracode wackestone that contains plants (primarily seed ferns and ferns), eurypterids, shrimp, brachiopods, bivalves, and rare fish. The ostracode wackestone was deposited in a low-energy, marginal-marine environment. A thin sequence (<1 m thick) of interbedded laminated limestone and mudstone overlies the conglomerate in a small area. This facies contains a well-preserved mixed assemblage of terrestrial (conifers, insects, myriapods, reptile), freshwater (ostracodes), aquatic (amphibians, reptile), brackish or euryhaline (ostracodes, eurypterids, spirorbids, fish), and marine (brachiopods, echinoderms) fossils. Many of the vertebrates are articulated and show no evidence of preburial decay, scavenging, or predation. A few vertebrates exhibit signs of flotation. Most articulated vertebrate specimens exhibit soft-tissue preservation in the form of dark-brown to black early-diagenetic microbialite body outlines (‘skin preservation’) containing fossil bacteria. Rhythmic patterns of lamination thickness variation in the limestones and mudstones indicate that this facies was deposited in a tidal environment. High sedimentation rate and variable salinity (and therefore exclusion of bioturbators and invertebrate scavengers) are interpreted as key elements that led to the excellent preservation of the fossils in this ancient estuarine environment. □Lagerstätte, taphonomy, estuarine, tidal bedding, paleovalley, Carboniferous, Kansas.  相似文献   

4.
Abstract: We redescribe the morphology of Yohoia tenuis (Chelicerata sensu lato) from the Cambrian Burgess Shale Lagerstätte. The morphology of the most anterior, prominent, so‐called great appendage changes throughout ontogeny. While its principal morphology remains unaltered, the length ratios of certain parts of the great appendage change significantly. Furthermore, it possesses a special jack‐knifing mechanism, i.e. an elbow joint: the articulation between the distal one of the two peduncle elements and the most proximal of the four spine‐bearing claw elements. This morphology might have enabled the animal to hunt like a modern spearer‐type mantis shrimp, an analogy enhanced by the similarly large and protruding eyes. For comparison, details of specimens of selected other great‐appendage arthropods from the Lower Cambrian Chengjiang Lagerstätte have been investigated using fluorescence microscopy. This revealed that the morphology of the great appendage of Y. tenuis is much like that of the Chengjiang species Fortiforceps foliosa and Jianfengia multisegmentalis. The morphology of the great appendage of the latter is even more similar to the morphology developed in early developmental stages of Y. tenuis, while the morphology of the great appendage of F. foliosa is more similar to that of later developmental stages of Y. tenuis. The arrangement of the elbow joint supports the view that the great appendage evolved into the chelicera of Chelicerata sensu stricto, as similar joints are found in various ingroup taxa such as Xiphosura, Opiliones or Palpigradi. With this, it also supports the interpretation of the great appendage to be homologous with the first appendage of other arthropods.  相似文献   

5.
Abstract: Key aspects of the morphology, autecology, systematics and taphonomy of the crustacean syncarids from the Montceau Lagerstätte (Upper Carboniferous, Stephanian B; France) are presented. Palaeocaris secretanae is the most abundant faunal element of the Montceau biota and shows striking morphological similarities with Palaeocaris typus from the Mazon Creek Lagerstätte (Westphalian D; Illinois, USA). Palaeocaris secretanae was a shrimp‐like animal with a short head (no head shield), large mandibles, 14 trunk segments (the first one being reduced) and a fan‐like caudal termination. Both the body and the appendage design indicate abilities for crawling on the substratum (slender endopods) and for escape reaction (uropodal fan, pleonal flexibility), although swimming activities may have been reduced (trunk appendages with small flap‐like exopods). Details of the appendages involved in feeding, e.g. mandibles and maxillipeds, indicate poor ability for predation but point to an omnivorous detritus feeding mode. Poorly developed respiratory organs (small cylindrical epipods) suggest a relatively low level of locomotory activity. The field of vision may have been large and panoramic (stalked eyes). Rows of pores on 12 trunk segments are interpreted as possible sensory organs used for current detection. Females were brooding eggs (clusters of eggs preserved along anteroventral trunk). Microprobe analysis indicates that siderite is the major component of the nodules. Four events played a key‐role in the three‐dimensional preservation of syncarids: (1) rapid burial, (2) minimal decomposition, (3) phosphatic mineralization shortly after the animal's death and (4) nodule formation around the carcass. Palaeocaris secretanae is morphologically close to Recent syncarids such Anaspides tasmaniae (freshwater streams, Australia) in its general body plan and detailed anatomy, e.g. mouth parts, indicating morphological stasis in syncarids over more than 200 million years.  相似文献   

6.
7.
A deep‐water Konservat Lagerstätte from the lower Caradoc (Sandbian) at Girvan is dominated by the trilobite Diacanthaspis trippi, the carpoids Anatifopsis n. sp.? and a new genus of ctenocystoid together with the polyplacophoran Solenocaris solenoides and the brachiopod Onniella williamsi. Most of these are multi‐element organisms, with many specimens preserved in an articulated state in finely laminated rocks, indicating minimal disturbance and suggesting that the fauna is largely an in situ association. It contains few of the species known from other deep‐water sites of similar age at Girvan which contain diverse assemblages of trilobites and brachiopods absent from the Lagerstätte. The taphonomy of the site indicates preservation by rapid burial followed by early diagenesis under dysaerobic conditions. It provides a ‘taphonomic window’ on otherwise unknown faunas from distal shelf facies on the Ordovician Laurentian margin, and, moreover, is an important reminder of the hidden biodiversity that resided in thin‐shelled, multi‐element organisms.  相似文献   

8.
Kiisortoqia soperi gen. et sp. nov. is an arthropod species from the Early Cambrian Sirius Passet Lagerstätte of North Greenland. A head, incorporating four appendiferous segments and biramous limbs, with an anteroposteriorly compressed basipod with a spine bearing median edge, support the euarthropod affinities of K. soperi gen. et sp. nov. Similarities with ‘short great appendage’ arthropods, or megacheirans, like the nine‐segmented endopod, and the flap‐ or paddle‐like exopod, may be symplesiomorphies. The antennula, however, resembles in composition and size the anteroventral raptorial appendage of anomalocaridids. Thus, the morphology of K. soperi gen. et sp. nov. provides additional support for the homologization of the anomalocaridid ‘great appendage’ with the appendage of the antennular or deutocerebral segment of extant Euarthropoda. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 477–500.  相似文献   

9.
We describe a weakly biomineralized non‐trilobite artiopodan arthropod from the Guzhangian Weeks Formation of Utah. Falcatamacaris bellua gen. et sp. nov. is typified by a thin calcitic cuticle, broad cephalon without eyes or dorsal ecdysial sutures, an elongate trunk with distinctively sickle‐shaped pleural spines and a long tailspine with a bifurcate termination. The precise affinities of Falcatamacaris gen. nov. are problematic due to the presence of unique features within Artiopoda, such as the peculiar morphology of the pleural and posterior regions of the trunk. Possible affinities with aglaspidid‐like arthropods and concilitergans are discussed based on the possession of 11 trunk tergites, edge‐to‐edge articulations and overall body spinosity. The new taxon highlights the importance of the Weeks Formation Konservat‐Lagerstätte for further understanding the diversity of extinct arthropod groups in the upper Cambrian.  相似文献   

10.
A number of lobopodian taxa from the Cambrian display pairs of sclerotized plates symmetrically positioned along the dorsum of the animal, predominantly above the walking appendages. Most genera were described from complete body fossils exquisitely preserved in the famous Cambrian Lagerstätten, but lobopodian phosphatized plates are found worldwide as typical components of Cambrian small shelly fossil assemblages (SSF). Details regarding intraspecific and ontogenetic variation in lobopod plates are elusive, and the lack of details of ornamentation in Lagerstätte specimens does not minimize the problem. We document here an assemblage of well‐preserved isolated plates of Onychodictyon sp. from the Lower Cambrian (Cambrian Series 2, Stage 4) of North Greenland. Two specimens exhibit perfectly conjoined plates from successive moults. Details of ornamentation and the outline and profile of the fixed plates are identical, but width and length of the underlying plate are 24% larger. These specimens boost the body of evidence that lobopodians moulted but also show that plate outline and ornamentation did not vary during ontogeny.  相似文献   

11.
The Triassic to Recent fossil record of the dinoflagellates is represented overwhelmingly by geologically resistant, organic-walled, non-motile resting cysts; such cysts are formed following the sexual phase in the life cycle. Very few confirmed records exist of the motile stage being preserved in the fossil record. This paper reports the occurrence of two very unusual dinoflagellate taphofacies, one developed in bituminous shales and the other in micrites, from the Oligocene fossil Lagerstätte at Sieblos, Hesse, Germany. A new dinoflagellate taxon, Sieblososphaera martini sp. nov. has been identified through analysis of dissociated skeletal elements in the bituminous shales and external moulds and casts in the micrites. The unique preservation of these fossils confirms them not only as primary biogenically silicified motile thecate cells, but also indicates that there was a much greater range of tabulation present within the subfamily Lithoperidiniaceae than has hitherto been recognized.  相似文献   

12.
The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well‐preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13C) analysis of bulk decapod cuticle yielded similar mean δ13C values for both taxa (?25.1‰ and ?26‰, respectively). Sedimentary biomarkers were composed of n‐alkanes from C16 to C36, with the short‐chain n‐alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian–early Maastrichtian and demonstrates for the first time that organic δ13C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.  相似文献   

13.
Abstract: From thinly laminated marlstones of the Hesseltal Formation, representing the Late Cenomanian Oceanic Anoxic Event (OAE) 2, at Lengerich in the Teutoburger Wald (Westfalen, north‐west Germany), 17 sediment‐compacted baculitid ammonites with carbonised and partially phosphatised soft parts are recorded. Some preserve remains of the buccal mass, including jaws (occasionally articulated) and radulae, as well as of the cephalic cartilage, such as eye capsules. Such have not yet been recorded previously for the order Ammonoidea. In addition, originally unmineralised parts found preserved in these specimens include extensive portions of the digestive tract, the siphonal tube, false colour patterns (megastriae), as well as traces of what would appear to be the oviduct. At the same levels, patches with numerous isolated horny upper and rarer lower jaws as well as radulae occur; these may represent regurgitates or faeces of larger predators. The cephalopod remains described were deposited in an epicontinental setting, possibly at palaeodepths between 200 and 600 m. In this particular Late Cretaceous fossil Lagerstätte, upper jaws and anaptychi of ammonites rank among the commonest fossils.  相似文献   

14.
Palaeontological data are key elements for inferring ancestral character states and the assembly of character complexes, but cephalopod fossils preserving soft tissues are very rare. The exceptionally well‐preserved, unique specimen of Jurassic Proteroctopus ribeti Fischer & Riou from the Lagerstätte of La‐Voulte‐sur‐Rhône (c. 165 Ma, France) is one of the few fossil octopod related taxa, but is rarely considered in evolutionary studies. In this paper, we used synchrotron microtomography to reappraise its external characters and for the first time, to reveal its internal structures. A unique character association is found with two fins, head fused to the body, eight well‐developed arms with cirri and two rows of oblique suckers, a gladius and absence of an ink sac. The phylogenetic analysis indicates that Proteroctopus is a basal member of the Vampyropoda. However, this result should be interpreted with caution due to the number of unknown character states in the matrix. Contrary to previous assumptions, the phylogenetic position of Proteroctopus, as well as its stratigraphic occurrence, suggest that the arrangement of biserial suckers may be the ancestral condition in Vampyropoda.  相似文献   

15.
The geological age of the onychophoran crown‐group, and when the group came onto land, have been sources of debate. Although stem‐group Onychophora have been identified from as early as the Cambrian, the sparse record of terrestrial taxa from before the Cretaceous is subject to contradictory interpretations. A Late Carboniferous species from the Mazon Creek biota of the USA, Helenodora inopinata, originally interpreted as a crown‐group onychophoran, has recently been allied to early Cambrian stem‐group taxa. Here we describe a fossil species from the Late Carboniferous Montceau‐les‐Mines Lagerstätte, France, informally referred to as an onychophoran for more than 30 years. The onychophoran affinities of Antennipatus montceauensis gen. nov., sp. nov. are indicated by the form of the trunk plicae and the shape and spacing of their papillae, details of antennal annuli, and the presence of putative slime papillae. The poor preservation of several key systematic characters for extant Onychophora, however, prohibits the precise placement of the Carboniferous fossil in the stem or crown of the two extant families, or the onychophoran stem‐group as a whole. Nevertheless, A. montceauensis is the most compelling candidate to date for a terrestrial Paleozoic onychophoran.  相似文献   

16.
A new carcinosomatid eurypterid, Rhinocarcinosoma dosonensis sp. nov., and Hughmilleria sp., are described from the Dô Son Formation of the Dô Son Peninsula, northern Vietnam. R. dosonensis is characterized by podomere 7 of prosomal appendage VI produced into an anterodistal spine, a metastoma with a cordate posterior margin, and an indented opisthosomal differentiation (i.e. preabdomen–postabdomen margin is concave). The Dô Son Formation was originally interpreted as Late Devonian (Givetian/Frasnian) in age but the unit containing the eurypterid assemblage is now considered much older (Late Silurian). A deltaic palaeoenvironmental setting is interpreted from biotic associations and sedimentological evidence.  相似文献   

17.
Extant aplacophorans, a group of shell‐less vermiform molluscs, respire through appendages within or projecting from a posterior cavity. Respiratory structures differ between the subclasses Caudofoveata (ctenidia within the cavity) and Solenogastres (folds of the mantle itself). Acaenoplax hayae, a Silurian vermiform mollusc from the Herefordshire Lagerstätte, England, exhibits characteristics of both these groups. While recent work places it within the crown group Aplacophora, near the caudofoveates, initial observations suggested that its respiratory structures were closer to those of the solenogastres. Here, we present new reconstructions of the posterior of Acaenoplax prepared with the aim of resolving features obscured when prior studies were undertaken. These reconstructions detail a novel posterior architecture, not closely comparable to that of either extant aplacophoran group, in which respiratory projections arise from a membrane that partly encloses a central posterior cavity. The posterior membrane is flanked by small spherical projections; both membrane and spherical projections are apparently unique within the Aplacophora. The existence of this previously undocumented respiratory system underlines the diversity of the aplacophoran clade during the Palaeozoic.  相似文献   

18.
The chemical composition of fossil soft tissues is a potentially powerful and yet underutilized tool for elucidating the affinity of problematic fossil organisms. In some cases, it has proven difficult to assign a problematic fossil even to the invertebrates or vertebrates (more generally chordates) based on often incompletely preserved morphology alone, and chemical composition may help to resolve such questions. Here, we use in situ Raman microspectroscopy to investigate the chemistry of a diverse array of invertebrate and vertebrate fossils from the Pennsylvanian Mazon Creek Lagerstätte of Illinois, and we generate a ChemoSpace through principal component analysis (PCA) of the in situ Raman spectra. Invertebrate soft tissues characterized by chitin (polysaccharide) fossilization products and vertebrate soft tissues characterized by protein fossilization products plot in completely separate, non‐overlapping regions of the ChemoSpace, demonstrating the utility of certain soft tissue molecular signatures as biomarkers for the original soft tissue composition of fossil organisms. The controversial problematicum Tullimonstrum, known as the Tully Monster, groups with the vertebrates, providing strong evidence of a vertebrate rather than invertebrate affinity.  相似文献   

19.
Stein, M., Peel, J.S., Siveter, D.J. & Williams, M. 2009: Isoxys (Arthropoda) with preserved soft anatomy from the Sirius Passet Lagerstätte, lower Cambrian of North Greenland. Lethaia, Vol. 43, pp. 258–265. Isoxys volucris is the most commonly occurring species in the lower Cambrian Sirius Passet Lagerstätte of North Greenland. Newly identified material allows a first, limited, account of the ventral morphology of this species, hitherto known only by the morphology of its shield. The antennula is large and robust, composed of about seven articles armed with spines, and was probably not sensorial. The postantennular limbs are serially similar, biramous with a large paddle‐shaped exopod fringed with setae. It is possible that the animal possessed a furca. The inner lamella, lining the ventral surface of the shield is recognised in Isoxys for the first time. Comparisons with other congeneric species of which aspects of the ventral morphology are known, show similarities with Isoxys auritus from China, reconsidered here, but indicate differences in antennular morphology with other species as currently understood. □Cambrian, Greenland, Isoxys, soft anatomy, Sirius Passet, palaeoecology.  相似文献   

20.
McNamara, M.E., Orr, P.J., Manzocchi, T., Alcalá, L., Anadón, P. & Peñalver, E. 2011: Biological controls upon the physical taphonomy of exceptionally preserved salamanders from the Miocene of Rubielos de Mora, northeast Spain. Lethaia, Vol. 45, pp. 210–226. The middle Miocene Rubielos de Mora Konservat‐Lagerstätte of northeast Spain is hosted within profundal, finely laminated, lacustrine mudstones. The diverse biota includes abundant salamanders. Most individuals died during separate episodes and sank rapidly postmortem. Specimens are typically preserved in dorso‐ventral aspect, the most hydrodynamically stable orientation. The near‐cylindrical morphology of the body, however, allowed some carcasses to settle in or subsequently re‐orientate into, lateral orientations. Loss of skeletal elements (i.e. reduced completeness) reflects their location within the body and followed a distal to proximal trend. Two stages are identified: initial loss of a small number of phalanges, followed by loss of more proximal limb bones plus additional phalanges. Disarticulation is more complex: it occurred via several mechanisms (notably, abdominal rupture and re‐orientation of part of the body and limbs during decay) and shows no consistent pattern among specimens. The physical taphonomy of the salamanders is controlled predominantly by intrinsic biological factors, i.e. the geometry of the body and of individual skeletal elements, the orientation, inherent strength and location of specific joints and the extent to which soft tissues, particularly the skin, persist during decay. These biological factors probably control patterns of physical taphonomy of other fossil tetrapods with a similar skeletal configuration. □Articulation, completeness, Konservat‐Lagerstätten, orientation, quantitative taphonomy, salamanders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号