首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogenase in Chromatium vinosum was rapidly, but reversibly inhibited by NH 4 + . Activity of the Fe protin component of nitrogenase required both Mn2+ and activating enzyme. Activating enzyme from Rhodospirillum rubrum could replace Chromatium chromatophores in activating the Chromatium Fe protein, and conversely, a protein fraction prepared from Chromatium chromatophores was effective in activating R. rubrum Fe protein. Inactive Chromatium Fe protein contained a peptide covalently modified by a phosphate-containing molecule, which migrated the same in SDS-polyacrylamide gels as the modified subunit of R. rubrum Fe protein. In sum, these observations suggest that Chromatium nitrogenase activity is regulated by a covalent modification of the Fe protein in a manner similar to that of R. rubrum.Abbreviation HEPES N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid  相似文献   

2.
The structure and hydration of reconstituted human topoisomerase I comprising the core and the carboxyl-terminal domains in covalent complex with 22-basepair DNA duplex has been investigated by molecular dynamics simulation. The structure and the intermolecular interactions were found to be well maintained over the simulation. The complex displays a high degree of flexibility of the contact area, confirmed by the presence of numerous water-mediated protein-DNA hydrogen bonds comparable in quantity and distribution to the direct ones. The interaction between the enzyme and the solvent also provides the key for interpreting the experimental reduction of activity or affinity observed upon single residue mutation. Finally, four long lasting water molecules are observed in the proximity of the active site, one of which in the appropriate position to accept a proton from the active Tyr723.  相似文献   

3.
4.
Bifunctional reagents 3,3'-dithiobis(succinimidyl propionate), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide and N-succinimidyl 3-(2-pyridyldithio)propionate have been used in an attempt to study molecular organization and covalent cross-linking of adrenodoxin reductase with adrenodoxin, the components of steroidogenic electron transfer system in bovine adrenocortical mitochondria. There was no cross-linking of individual proteins by the bifunctional reagents used, except for adrenodoxin cross-linking with water-soluble carbodiimide. Substantial cross-linking of adrenodoxin reductase with adrenodoxin was observed when water-soluble carbodiimide was used as cross-linking reagent. However, the cross-linked complex failed to transfer electrons. Significant amounts of the functional cross-linked complex (up to 42%) were observed when the proteins were cross-linked with N-succinimidyl 3-(2-pyridyldithio)propionate. Using gel filtration, ion-exchange chromatography and affinity chromatography on adrenodoxin-Sepharose, the complex was obtained in a highly purified form. In the presence of cytochrome P-450scc or cytochrome c, the cross-linked complex of adrenodoxin reductase with adrenodoxin was active in electron transfer from NADPH to heme proteins. The data obtained indicate that there are distinct binding sites on the adrenodoxin molecule responsible for the adrenodoxin reductase and cytochrome P-450scc binding, which suggests that steroidogenic electron transfer may be realized in an organized complex.  相似文献   

5.
A cleavable cross-linking reagent, dimethyl-3,3'-dithiobispropionimidate, was used to study the molecular organization of adrenocortical cytochrome P-450scc. Extensive cross-linking was found to occur, resulting in the formation of heterologous oligomers up to octamer. The covalently cross-linked complex of adrenocortical cytochrome P-450scc with adrenodoxin has been obtained by using dimethyl-3,3'-dithiobispropionimidate. In the presence of NADPH and adrenodoxin reductase, electron transfer to cytochrome P-450scc occurs in the complex, and, in the presence of cholesterol, the latter effectively oxidizes to pregnenolone. By using covalently immobilized adrenodoxin and heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, the adrenodoxin-binding site was shown to be located in the heme-containing, catalytic domain of cytochrome P-450scc. The data obtained indicate the existence of two different sites on the adrenodoxin molecule that are responsible for the interaction with adrenodoxin reductase and cytochrome P-450scc. This is consistent with the model mechanism of electron transfer in the organized complex.  相似文献   

6.
The cross-linking of the two components of lactose synthetase, alpha-lactalbumin and a galactosyltransferase, with dimethylpimelimidate was examined. The extent of the cross-linking at pH 8.1 was found to be dependent upon the presence of substrates or inhibitors for the galactosyltransferase. N-acetylglucosamine and mixtures of either N-acetylglucosamine, Mn-2+ and UDP, or UDP-galactose and Mn-2+ promoted the formation of cross-linked species. Glucose or a mixture of UDP and Mn-2+ were much less effective in promoting cross-linking. Two types of intermolecularly cross-linked species of alpha-lactalbumin and the galactosyltransferase were obtained. Each was a 1:1 cross-linked complex of alpha-lactalbumin and either of the two forms of the transferase with molecular weights of about 42,000 and 48,000, respectively. Cross-linked complexes were not observed with more than 1 molecule each of alpha-lactalbumin and the transferase. The cross-linked complexes were obtained in homogeneous form by gel filtration on Sephadex and absorption of uncross-linked enzyme by affinity chromatography on alpha-lactalbumin-Sepharose in the presence of N-acetylglucosamine. They migrated on gel electrophoresis in sodium dodecyl sulfate with mobilities in accord with their predicted molecular weights as 1:1 complexes of alpha-lactalbumin and the transferase. The amino acid composition of the cross-linked complex was in reasonable agreement with the expected composition of a 1:1 mixture of alpha-lactalbumin and galactosyltransferase. The enzymic properties of the cross-linked and uncross-linked enzymes were compared. The cross-linked complex had a much higher intrinsic lactose synthetase activity than did uncross-linked enzyme although only about 1% of the potential activity of uncross-linked enzyme in the presence of optimal concentrations of alpha-lactalbumin. The lactose synthetase activity of the cross-linked complex, however, was unaffected by exogenous alpha-lactalbumin. In addition, the complex readily catalyzed the transfer of galactose from UDP-galactose to xylose in the absence of exogenous alpha-lactalbumin. The N-acetyllactosamine synthetase activity of the complex was low compared to its activity with other monosaccharides. Ovalbumin, which is a good acceptor for the uncross-linked transferase, was not an acceptor for the cross-linked complex. Kinetic studies of the complex suggest that its modified catalytic activity is not the result of the modification by dimethylpimelimidate but reflects the expected effects of is provided, and that  相似文献   

7.
8.
9.
Meniscus depletion sedimentation equilibrium ultracentrifuge experiments were performed on purified MoFe and Fe proteins of Azotobacter vinelandii. The MoFe protein was found to have a molecular weight of 245,000, using an experimentally confirmed partial specific volume of 0.73. The MoFe protein formed one band on sodium dodecyl sulfate gel electrophoresis and had a subunit molecular weight of 56,000. The subunit molecular weight from ultracentrifuge experiments in 8 M urea was 61,000. The molecular weight of the Fe protein was calculated to be 60,500 in meniscus depletion experiments. Similar experiments in 8 M urea solvent indicated a subunit molecular weight of 30,000. A subunit molecular weight of 33,000 was obtained from sodium dodecyl sulfate gel electrophoresis experiments.  相似文献   

10.
In extracts of the unicellular cyanobacterium Gloeothece, the Fe-protein of nitrogenase can be separated by SDS-PAGE into two antigenically identifiable components. Unlike the situation in photosynthetic bacteria such as Rhodospirillum rubrum, these two forms do not arise from covalent modification of the protein by ADP-ribosylation. Rather, the Fe-protein of Gloeothece nitrogenase is subjected to modification by palmitoylation.  相似文献   

11.
12.
J Kuhla  J Oelze 《Journal of bacteriology》1988,170(11):5325-5329
Azotobacter vinelandii was grown diazotrophically in chemostat cultures limited by sucrose, citrate, or acetate. Specific activities of cellular oxygen consumption (qO2) and nitrogenase (acetylene reduction) were measured in situ at different dilution rates (D, representing the specific growth rate mu at steady state). Sucrose-limited cultures exhibited linear relationships between qO2 and D, each of which, however, depended on the dissolved oxygen concentration in the range of 12 to 192 microM O2. From these plots, qO2 required for maintenance processes (mO2) were extrapolated. mO2 values did not increase linearly with increasing dissolved oxygen concentrations. With citrate- or acetate-limited cultures qO2 also depended on D. At 108 microM O2, however, qO2 and mO2 of the latter cultures were significantly lower than those of sucrose-limited cultures. Specific rates of acetylene reduction increased linearly with D, irrespective of the type of limitation and of the dissolved oxygen concentration (J. Kuhla and J. Oelze, Arch. Microbiol. 149:509-514, 1988). The reversible switch-off of nitrogenase activity under oxygen stress also depended on D and was independent of qO2, mO2, or the limiting substrate. Increased switch-off effects resulting from increased stress heights could be compensated for by increasing D. Since D represents not only the supply of the carbon source but also the supply of electrons and energy, the results suggest that the flux of electrons to the nitrogenase complex, rather than qO2, stabilizes nitrogenase activity against oxygen inactivation in aerobically growing A. vinelandii.  相似文献   

13.
The enzyme nitrogenase reduces dinitrogen to ammonia utilizing electrons, protons, and energy obtained from the hydrolysis of ATP. Mo-dependent nitrogenase is a symmetric dimer, with each half comprising an ATP-dependent reductase, termed the Fe Protein, and a catalytic protein, known as the MoFe protein, which hosts the electron transfer P-cluster and the active-site metal cofactor (FeMo-co). A series of synchronized events for the electron transfer have been characterized experimentally, in which electron delivery is coupled to nucleotide hydrolysis and regulated by an intricate allosteric network. We report a graph theory analysis of the mechanical coupling in the nitrogenase complex as a key step to understanding the dynamics of allosteric regulation of nitrogen reduction. This analysis shows that regions near the active sites undergo large-scale, large-amplitude correlated motions that enable communications within each half and between the two halves of the complex. Computational predictions of mechanically regions were validated against an analysis of the solution phase dynamics of the nitrogenase complex via hydrogen-deuterium exchange. These regions include the P-loops and the switch regions in the Fe proteins, the loop containing the residue β-188Ser adjacent to the P-cluster in the MoFe protein, and the residues near the protein-protein interface. In particular, it is found that: (i) within each Fe protein, the switch regions I and II are coupled to the [4Fe-4S] cluster; (ii) within each half of the complex, the switch regions I and II are coupled to the loop containing β-188Ser; (iii) between the two halves of the complex, the regions near the nucleotide binding pockets of the two Fe proteins (in particular the P-loops, located over 130 Å apart) are also mechanically coupled. Notably, we found that residues next to the P-cluster (in particular the loop containing β-188Ser) are important for communication between the two halves.  相似文献   

14.
The electronic absorption and circular dichroism spectra of the DNA-acridine orange complex have been measured over a range of ionic strength, pH, and DNA phosphate to dye (P/D) ratios. Three circular dichroism bands associated with the long wavelength absorption band of acridine orange are induced on complex formation with DNA. Two of the dichroism bands, due mainly to dimeric dye molecules, are favored by low ionic strength, low pH (3.2), and a low P/D ratio (~3), while the third, deriving primarily from monomeric dye, is optimum at high ionic strength, neutral pH, and a larger P/D ratio (9). The data suggest that monomeric acridine orange binds to DNA in the form of a left-handed helical array with four dye molecules per turn, while the bound dimer has a skewed sandwich conformation which is itself dissymmetric. The stereochemical relations between the bound monomer dye and the DNA are consistent with a modified intercalation model for the DNA-acridine complex.  相似文献   

15.
The ultrastructure of the nuclear pore complex has been investigated in isolated nuclei of an in vitro cultured bovine liver cell line. In shadow-cast replicas of the surface of nuclei isolated in Tris buffer containing low K+ and Mg2+ concentrations (RSB) the rims of the pores appeared as annular projections with an outer diameter of 100 to 120 nm. When the nuclei were isolated in Tris buffer containing 0.1% Triton the projections were essentially lost, together with the outer membrane of the nuclear envelope. In electron micrographs of whole-mount preparations the Triton-Tris nuclei—but not the RSB nuclei—were surrounded by numerous circular structures, which obviously had been detached from the nuclear surface during the preparation. They consisted of eight granules of about 20 nm diameter which were connected in a circular fashion by fibrous material. The circular structures had an inside diameter close to 65 nm. In broken nuclei many of these circular structures contained a second, smaller circular component and a central granule. From these observations it is concluded that the annulus of the nuclear pore consists of two components and that the outer component is located in the perinuclear space in intimate association with the membrane limiting the pore. A modified model of the nuclear pore complex which accounts for this location is proposed.  相似文献   

16.
The antiblastomic activity of the carminomycin complex components was studied with respect to 8 strains of transplantable tumors of mice: lymphosarcoma L10-1, prestomach cancer OZh-5, sarcoma 180, lymphoid leucosis L 1210, lung bronchogenic cancer RL, lymphodenosis NK/LI, Ehrlich carcinoma and Garding-Passy melanoma. It was shown that components I, II and III possessed almost the same high antiblastomic activity and the same optimal administration schemes should be used for them. The scheme consisted of two-fold administration of the drug at intervals of 96-120 hours. Component I had broader therapeutic ranges and was more active against the lung bronchogenic cancer as compared to component II. All 3 components had no selective antiblastomic effect on the ascitic form of Ehrlich carcinoma. A comparative study of the component toxicity and pharmacology is required for final conclusion as to the recommendation of one of the components for clinical trials.  相似文献   

17.
18.
M Orlowski  C Michaud 《Biochemistry》1989,28(24):9270-9278
The 700-kDa multicatalytic proteinase complex from bovine pituitaries separates in polyacrylamide gel electrophoresis under dissociating and reducing conditions into 11 components with molecular masses ranging from 21 to 32 kDa. No higher molecular mass components were detected. A rabbit polyclonal antibody raised against the complex recognizes five immunoreactive components. As reported previously, the complex exhibits three distinct proteolytic activities designated as chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolyzing activities. All three activities are rather rapidly inactivated by 3,4-dichloroisocoumarin, a general serine protease inhibitor, however, the pseudo-first-order rate constants of inactivation of the three components differ within a wide range, with the chymotrypsin-like activity being most sensitive to inhibition. The peptidylglutamyl-peptide hydrolyzing activity is greatly activated by low concentrations of sodium dodecyl sulfate and fatty acids and seems to constitute the main component responsible for degradation of protein substrates. In addition to cleaving bonds on the carboxyl side of glutamyl residues, this activity also cleaves, albeit at a slower rate, bonds on the carboxyl side of hydrophobic residues; however, the secondary specificity of this component is clearly different from the chymotrypsin-like activity. Heparin selectively activates the chymotrypsin-like activity. The complex cleaves rapidly both native and dephosphorylated beta-casein in a reaction greatly accelerated by low concentrations of sodium dodecyl sulfate. The nature of proteolytic products, and also the rate of formation of acid-soluble, ninhydrin-reactive products, is different for the phosphorylated and dephosphorylated form of beta-casein, indicating that the degree of phosphorylation influences the rate and pattern of proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Exposure of nitrogen-fixing cultures of Anabaena spp. to 100% oxygen resulted in the rapid decline of nitrogenase activity. When oxygen-treated cells were transferred to 100% argon, nitrogenase activity was quickly restored in a process that required protein synthesis. Anaerobiosis was not essential for the recovery process; in fact, cells of Anabaena sp. strains CA and 1F will recover nitrogenase activity after prolonged incubation in 100% oxygen. Oxygen treatment acted directly on the intracellular nitrogenase and did not affect other metabolic processes. Examination of crude extracts of oxygen-treated Anabaena sp. strain CA indicated that both components of nitrogenase are inactivated. However, several lines of evidence suggest that oxygen treatment does not result in irreversible denaturation of nitrogenase, but rather results in a reversible inactivation which may serve as a protection mechanism. Nitrogenase present in crude extracts from cells of Anabaena sp. strain 1F which had been incubated for a prolonged period in 100% oxygen was less sensitive to oxygen in vitro than was nitrogenase of a crude extract of untreated cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号