首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Ueno  Y Kitase  K Moriyama  H Inoue 《Matrix biology》2001,20(5-6):347-355
Dental pulp is thought to participate in supplementary mineralization, such as reparative dentin and pulp stones, but no direct proof of this has been reported. To study this process at a molecular level, we investigated the matrix mineralization of dental pulp using a clonal cell line (RPC-C2A) derived from rat incisor dental pulp. Mineralized nodules in extracellular matrix were formed by RPC-C2A cells cultured in the presence of conditioned medium (CM) from confluent osteoblastic MC3T3-E1 cells. These nodules were stained by the von Kossa method and with alizarin red S and quantified by the measurement of acid-soluble calcium deposition. This CM was most effective when collected 3-6 days after confluency and added at 50% to the culture medium. The CM-treated RPC-C2A cells showed high alkaline phosphatase activity, a high mRNA level of osteocalcin and decreases in the mRNA levels of osteopontin and osteonectin, but undetectable levels of mRNA of dentin sialophosphoprotein by Northern blot analyses. A pan-specific anti-transforming growth factor (TGF)-beta antibody and a soluble form of receptor for bone morphogenetic protein (BMP)-2/-4 did not neutralize the CM-induced mineralization. These results suggest that some soluble factor(s) other than TGF-beta or BMP-2/-4 in the CM from MC3T3-E1 cells cause differentiation of RPC-C2A cells to osteoblast-like cells.  相似文献   

2.
Dental pulp cells play an important role in maintaining dental mineralized tissue throughout life. Supplementary mineralization such as reparative dentin and pulp stone frequently occurs after primary dentin formation. Dental pulp cells are thought to be closely associated with such mineralization. We found that clonal rat dental pulp cells, RDP4-1 and RPC-C2A, produce and secrete osteopontin, but do not synthesize phosphophoryn which is a major noncollagenous protein found in dentin. The dental pulp osteopontin was highly phosphorylated and identified by thrombin susceptibility and immunoprecipitation with osteopontin/2ar antibody. Osteopontin synthesis markedly increased by 12-O-tetradecanoylphorbol-13-acetate (TPA) as observed in many osteoblastic cells. This study indicates that these cells can produce osteopontin as a major phosphoprotein and suggests that the synthesis of osteopontin could be used as a characteristic marker of dental pulp cells.  相似文献   

3.
Vitamin A, 1,25-dihydroxyvitamin D3 and dexamethasone are well-characterized hydrophobic molecules whose biological actions are mediated via different members of the nuclear hormone receptor family. We report here their actions on tooth formation at the molecular level. We have tested the effects of these compounds on osteopontin (OPN), dentin sialoprotein (DSP-PP), and collagen type I expression in pre-mineralization and mineralization stage rat tooth organ cultures which mirror in vivo developmental patterns. These proteins are all believed to participate in the mineralization of dentin. 1,25-Dihydroxyvitamin D3 up-regulated OPN, but had no effect on DSP-PP mRNA expression. Vitamin A up-regulated DSP-PP expression as did dexamethasone. Dexamethasone also up-regulated collagen type I expression. Our results suggest that 1,25-dihydroxyvitamin D3 does not modulate dentin mineralization by directly affecting DSP-PP expression. Vitamin A likely contributes to dentin mineralization by up-regulating DSP-PP expression. Finally, the up-regulation of DSP-PP expression in tooth germ cultures treated with dexamethasone suggests that its application to patient's dental pulp might promote increased extracellular matrix synthesis and mineralization in the pulp and may explain the narrowing of the dental pulp cavity in patients undergoing long-term dexamethasone administration.  相似文献   

4.
Summary In this study, the progenitor cells isolated from the human dental pulp were used to study the effects of ethylenediaminetetraacetic acid-soluble dentin extract (DE) on their differentiation and mineralization to better understand tissue injury and repair in the tooth. Mineralization of the matrix was increasingly evident at 14, 21, and 28 d after treatment with a mineralization supplement (MS) (ascorbic acid [AA], β-glycerophosphate [β-GP]) and MS+DE. Real-time polymerase chain reaction results showed type I collagen upregulation after the addition of MS+DE at 7 d. Alkaline phosphatase was downregulated after the mineralization became obvious at 14 d. Bone sialoprotein was shown to be upregulated in the mineralized cell groups at all time points and dentin sialophosphoprotein after 7 d. Core binding factor a 1 was upregulated by the treatment of MS and DE at 7, 14, and 21 d. These results indicated that the MS of AA, β-GP, and DE synergistically induced cell differentiation of pulp progenitor cells into odontoblast-like cells and induced in vitro mineralization.  相似文献   

5.
To investigate the effects of open dentinal tubules on the morphological and functional characteristics of dental pulp cells. Morphological changes in human dental pulp cells that were seeded onto dentin discs with open dentinal tubules were investigated on days 1, 2, 4, and 10 of culture using scanning electron microscopy and fluorescence microscopy. Samples collected on days 1, 3, 6, 8, and 10 of culture were evaluated for cell proliferation rate and alkaline phosphatase activity. Cultured human dental pulp cells developed a columnar or polygonal morphology and monopolar cytoplasmic processes that extended into the dentinal tubules. The cells formed a multilayer and secreted an extracellular matrix onto the cell surface. Scanning electron microscopy and fluorescence microscopy revealed polarized organization of odontoblasts. Cells seeded onto dentin discs proliferated minimally but showed high levels of ALP activity. Dental pulp cells seeded onto treated dentin discs develop an odontoblastlike phenotype, which may be a potential alternative for use in experimental research on dentinogenesis.  相似文献   

6.
Odontoblasts are post-mitotic cells organized as a layer of palisade cells along the interface between the dental pulp and dentin. They are responsible for the formation of the physiological primary and secondary dentins. They synthesize the organic matrix of type I collagen and actively participate to its mineralization by secreting proteoglycans and non-collagenous proteins that are implicated in the nucleation and the control of the growth of the mineral phase. They also participate to the maintenance of this hard tissue throughout the life of the tooth by synthesizing reactionary dentin in response to pathological conditions (caries, attrition, erosion…).  相似文献   

7.
Reparative dentin has a wide variety of manifestations ranging from a regular, tubular form to an irregular, atubular form. However, the characteristics of reparative dentin have not been clarified. This study hypothesized that the level of bone sialoprotein (BSP) expression will increase if the newly formed reparative dentin is bone-like but the dentin sialophosphoprotein (DSPP) level will decrease. In order to test this hypothesis, the expression of BSP and DSP was examined by immunohistochemistry and the expression of BSP was measured by in situ hybridization in an animal model. The pulps of 12 maxillary right first molars from twelve male rats were exposed and capped with MTA. In addition, in order to understand the role of transforming growth factor-beta 1 (TGF-β1) during reparative dentinogenesis, the expression of BSP and DSPP mRNA was analyzed by RT-PCR in a human dental pulp cell culture, and the transforming growth factor-beta 1 receptors (TβRI) and Smad 2/3 were examined by immunofluorescence in an animal model. DSP was expressed in the normal odontoblasts and odontoblast-like cells of the reparative dentin. Interestingly, BSP was strongly expressed in the odontoblast-like cells of reparative dentin. The level of the TβRI and Smad 2/3 proteins was higher in the reparative dentin than in the normal dentin. TGF-β1 up-regulated BSP in the human pulp cell cultures. This suggests that reparative dentin has both dentinogenic and osteogenic characteristics that are mediated by TGF-β1.  相似文献   

8.
Several members of the transforming growth factor (TGF)-beta superfamily are expressed in developing teeth from the initiation stage through adulthood. Of those, TGF-beta1 regulates odontoblast differentiation and dentin extracellular matrix synthesis. However, the molecular mechanism of TGF-beta3 in dental pulp cells is not clearly understood. In the present study, beads soaked with human recombinant TGF-beta3 induced ectopic mineralization in dental pulp from fetal mouse tooth germ samples, which increased in a dose-dependent manner. Further, TGF-beta3 promoted mRNA expression, and increased protein levels of osteocalcin (OCN) and type I collagen (COL I) in dental pulp cells. We also observed that the expression of dentin sialophosphoprotein and dentin matrix protein 1 was induced by TGF-beta3 in primary cultured dental pulp cells, however, not in calvaria osteoblasts, whereas OCN, osteopontin and osteonectin expression was increased after treatment with TGF-beta3 in both dental pulp cells and calvaria osteoblasts. Dentin sialoprotein was also partially detected in the vicinity of TGF-beta3 soaked beads in vivo. These results indicate for the first time that TGF-beta3 induces ectopic mineralization through upregulation of OCN and COL I expression in dental pulp cells, and may regulate the differentiation of dental pulp stem cells to odontoblasts.  相似文献   

9.
10.
Human adult dental pulp stem cells (hDPSCs) are a unique precursor population isolated from postnatal dental pulp and have the ability to regenerate a reparative dentin-like complex. In this study, we investigated the role of Asporin in hDPSCs, which was identified as a matrix protein in our previous dentin proteomic analysis. We isolated a clonogenic, highly proliferative population of cells from adult human dental pulp. These isolated hDPSCs were confirmed by fluorescence activated cell sorting (FACS) using stem cell-specific markers and have shown multilineage differentiation potential. The localization of Asporin was identified by immunohistochemistry in the globular calcification region in the junction of predentin and dentin. The gene and protein expression levels of Asporin were enhanced at the early stage of and then reduced during the late stage of differentiation of hDPSCs in mineralization media. ASPN knock-down using a lentiviral system suppressed the mineralization of hDPSCs. These results suggest that ASPN plays positive roles in the mineralization of hDPSCs and predentin to dentin.  相似文献   

11.
Regenerative endodontics aims to preserve, repair or regenerate the dental pulp tissue. Dental pulp stem cells, have a potential use in dental tissue generation. However, specific requirements to drive the dental tissue generation are still obscured. We established an in vivo model for studying the survival of dental pulp cells (DPC) and their potential to generate dental pulp tissue. DPC were mixed with collagen scaffold with or without slow release bone morphogenic protein 4 (BMP-4) and fibroblast growth factor 2 (FGF2). The cell suspension was transplanted into a vascularized tissue engineering chamber in the rat groin. Tissue constructs were harvested after 2, 4, 6, and 8 weeks and processed for histomorphological and immunohistochemical analysis. After 2 weeks newly formed tissue with new blood vessel formation were observed inside the chamber. DPC were found around dentin, particularly around the vascular pedicle and also close to the gelatin microspheres. Cell survival, was confirmed up to 8 weeks after transplantation. Dentin Sialophosphoprotein (DSPP) positive matrix production was detected in the chamber, indicating functionality of dental pulp progenitor cells. This study demonstrates the potential of our tissue engineering model to study rat dental pulp cells and their behavior in dental pulp regeneration, for future development of an alternative treatment using these techniques.  相似文献   

12.
Background information. Although the mechanism of cementogenesis is an area full of debate, the DFCs (dental follicle cells) are thought to be the precursors of cementoblasts. At the onset of cementogenesis, DFCs come into contact with the root dentin surface and undergo subsequent differentiation. But the exact effects of dentin or dentin matrix on DFCs remain an open question. In the present study, we hypothesized that dNCPs (dentin non‐collagenous proteins) extracted from dentin could stimulate DFCs to differentiate into cementoblast lineages. Results. DFCs were isolated from tooth germs of SD (Sprague—Dawley) rats and then co‐cultured with dNCPs. Treated DFCs presented several features of cementoblast lineages in vitro, as indicated by morphological changes, decreased proliferation, enhanced ALP (alkaline phosphatase) activity and increased matrix mineralization. The expression of mineralization‐associated proteins and genes were up‐regulated after induction, whereas the expression of specific markers of odontoblast were not detected. Incubation of treated DFC pellets in vivo revealed that a large amount of cementum‐like tissues was formed within the novel dentin carriers, which were quite distinct from the newly formed osteodentin secreted by DPSCs (dental pulp stem cells). The negative expression of DSP (dentin sialoprotein) also excluded the possibility of producing dentin matrix by treated DFCs. Conclusions. dNCPs can stimulate DFCs to differentiate into cementoblast lineages. The present study provides new insights into the mechanism of cementogenesis.  相似文献   

13.
Min JH  Ko SY  Cho YB  Ryu CJ  Jang YJ 《Human cell》2011,24(1):43-50
Despite the frequent use of primary dental pulp cells in dental regenerative research, few systematic studies of stemness for osteogenic and dentinogenic differentiation of human adult pulp cells have been reported. To investigate the stemness of human adult dental pulp cells, pulp tissues were obtained from extracted third molars and used as a source of pulp cells. In FACS analysis and immunophenotyping, the general mesenchymal stem cell markers CD44, CD90, and CD146 were highly expressed in early passages of the pulp cell culture. The stem cell population was dramatically decreased in an expansion culture of human dental pulp cells. When pulp cells were treated with additives such as β-glycerophosphate, ascorbic acid, and dexamethasone, nodule formation was facilitated and mineralization occurred within 2 weeks. Expression of osteogenic markers such as alkaline phosphatase, osteocalcin, and osteonectin was relatively low in undifferentiated cells, but increased significantly under differentiation conditions in whole passages. Dentinogenic markers such as dentin sialophosphoprotein and dentin matrix protein-1 appeared to decrease in their expression with increasing passage number; however, peak levels of expression occurred at around passage 5. These data suggested that stem cells with differentiation potential might exist in the dental pulp primary culture, and that their phenotypes were changed during expansion culture over 8-9 passages. Under these conditions, a dentinogenic population of pulp cells occurred in limited early passages, whereas osteogenic cells occurred throughout the whole passage range.  相似文献   

14.
Background information. Although adult bone‐marrow‐derived cell populations have been used to make teeth when recombined with embryonic oral epithelium, the differences between dental and non‐dental stem‐cell‐mediated odontogenesis remain an open question. Results. STRO‐1+ (stromal precursor cell marker) DPSCs (dental pulp stem cells) and BMSSCs (bone marrow stromal stem cells) were isolated from rat dental pulp and bone marrow respectively by magnetic‐activated cell‐sorting techniques. Their odontogenic capacity was compared under the same inductive microenvironment produced by ABCs (apical bud cells) from 2‐day‐old rat incisors. Co‐cultured DPSCs/ABCs in vitro showed more active odontogenic differentiation ability than mixed BMSSCs/ABCs, as indicated by the accelerated matrix mineralization, up‐regulated alkaline phosphatase activity, cell‐cycle modification, and the expression of tooth‐specific proteins and genes. After cultured for 14 days in the renal capsules of rat hosts, recombined DPSC/ABC pellets formed typical tooth‐shaped tissues with balanced amelogenesis and dentinogenesis, whereas BMSSC/ABC recombinants developed into atypical dentin—pulp complexes without enamel formation. DPSC and BMSSC pellets in vivo produced osteodentin‐like structures and fibrous connective tissues respectively. Conclusions. DPSCs presented more striking odontogenic capability than BMSSCs under the induction of postnatal ABCs. This report provides critical insights into the selection of candidate cells for tooth regeneration between dental and non‐dental stem cell populations.  相似文献   

15.
Human recombinant-gamma-interferon was tested on human dental pulp fibroblast activity in vitro. Fibroblast proliferation was estimated by a colorimetric test. Type I and type III collagens and fibronectin were quantified by radioimmunoassay in culture supernatant from confluent fibroblasts. A dose dependent stimulation of the proliferation was observed when fibroblasts were treated with recombinant-gamma-interferon. In contrast, an inhibition of the synthesis of soluble types I and III collagen and fibronectin by confluent cell cultures treated with recombinant-gamma-interferon occurred without apparent modification of the insoluble collagen level in the cell layer. Quantimetric analysis of type I collagen immunoperoxidase labelling have demonstrated that there was no intracellular storage of type I collagen in these cultured fibroblasts. These data support the view that human recombinant-gamma-interferon can affect human dental pulp fibroblast functions and thus may play an important part in the regulation of fibrosis.  相似文献   

16.
Epithelial-mesenchymal interactions regulate the growth and morphogenesis of ectodermal organs such as teeth. Dental pulp stem cells (DPSCs) are a part of dental mesenchyme, derived from the cranial neural crest, and differentiate into dentin forming odontoblasts. However, the interactions between DPSCs and epithelium have not been clearly elucidated. In this study, we established a mouse dental pulp stem cell line (SP) comprised of enriched side population cells that displayed a multipotent capacity to differentiate into odontogenic, osteogenic, adipogenic, and neurogenic cells. We also analyzed the interactions between SP cells and cells from the rat dental epithelial SF2 line. When cultured with SF2 cells, SP cells differentiated into odontoblasts that expressed dentin sialophosphoprotein. This differentiation was regulated by BMP2 and BMP4, and inhibited by the BMP antagonist Noggin. We also found that mouse iPS cells cultured with mitomycin C-treated SF2-24 cells displayed an epithelial cell-like morphology. Those cells expressed the epithelial cell markers p63 and cytokeratin-14, and the ameloblast markers ameloblastin and enamelin, whereas they did not express the endodermal cell marker Gata6 or mesodermal cell marker brachyury. This is the first report of differentiation of iPS cells into ameloblasts via interactions with dental epithelium. Co-culturing with dental epithelial cells appears to induce stem cell differentiation that favors an odontogenic cell fate, which may be a useful approach for tooth bioengineering strategies.  相似文献   

17.
Neurotrophins (NTs) are expressed during tooth development. However, little is known about a role of NTs in differentiation of pulp cells into mineralizing cells. In this study, mRNA expressions of hard tissue-related proteins, calcification and proliferation are examined in cultures of human pulp (HP) cells. Nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin (NT)-3 and NT-4/5 increased the mRNA levels of dentin sialophsphoprotein, alkaline phosphatase, osteopontin, type I collagen and bone morphogenetic protein-2 and mineral deposition in cultures of HP cells. The increased levels and manners varied, depending on the concentrations of NTs and hard-tissue related protein tested. On the other hand, only NGF significantly stimulated DNA synthesis in cultures of HP cells. These findings suggest that NTs characteristically regulate hard-tissue related protein expression, calcification and proliferation in pulp cells. NTs may accelerate pulp cell differentiation.  相似文献   

18.
19.
20.
The phosphorylative modification in vivo of histones after shortterm (0 to 60 min) isoproterenol stimulation of confluent rat C6 glioma cell cultures has been investigated. Analysis of the phosphorylation patterns after the purification and separation of histones by SDS/polyacrylamide gel electrophoresis revealed significantly increased phosphorylation of histones H1-1 and H3 and a decrease of the phosphorylation of histones H1-3, H2A, and H2B. There was no apparent effect of isoproterenol on the net phosphorylation of histones H1-2 and H4. The data suggest an effect of isoproterenol on the phosphorylative modification of glioma cell histones via modulation of nuclear phosphorylating and dephosphorylating activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号