首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.  相似文献   

2.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

3.
Observations of cells transformed by the Bryan strain of Rous sarcoma virus (RSV-BH) suggested that the intracellular concentrations of sodium ion (Na+) may play a critical role in cellular metabolism. In an attempt to manipulate intracellular Na+, chick embryo cells were exposed to graded concentrations of Na+ in the cellular growth medium, and the effects on capacity for glucose uptake was examined. After incubation for six hours, the incorporation rate of 2-deoxyglucose (used as a substitute for glucose) was proportional to the external Na+ concentration over the range, 100 mM to 200 mM. Cells transformed by RSV-BH were less responsive than nontransformed cells to differences in Na+ at low concentrations. The changes were specifically dependent upon Na+, since K+, Li+, or choline + were ineffective as substitutes, and increasing the ionic strength above that of 120 mM Na+ was effective only when Na+ was the added cation.  相似文献   

4.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive 86Rb+ uptake (a measure of Na+/K+ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na+ entry into the cells. The effect of bombesin on Na+ entry and Na+/K+ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive 86Rb+ uptake; the relative potencies of these peptides in stimulating the Na+/K+ pump were comparable to their potencies in increasing DNA synthesis (Zachary, I., and E. Rozengurt, 1985, Proc. Natl. Acad. Sci. USA., 82:7616-7620). Bombesin increased Na+ influx, at least in part, through an Na+/H+ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na+. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of 45Ca2+ from quiescent Swiss 3T3 cells. This Ca2+ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca2+. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity (Rodriguez-Pena, A., and E. Rozengurt, 1984, Biochem. Biophys. Res. Commun., 120:1053-1059), greatly decreased the stimulation of 86Rb+ uptake and Na+ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.  相似文献   

6.
Confluent monolayer cultures of the differentiated kidney epithelial cell line, Madin-Darby canine kidney cells (MDCK), have been used to study ion transport mechanisms involved in transepithelial transport. We have investigated the previously reported K+-stimulation of 22Na+ uptake by confluent monolayers of Na+ depleted cells (Rindler, M. J., Taub, M., and Saier, M. H., Jr. (1979) J. Biol. Chem. 254, 11431-11439). This component of Na+ uptake was insensitive to ouabain and amiloride, but was strongly inhibited by furosemide or bumetanide. Ouabain-insensitive 86Rb+ uptake was also inhibitable by furosemide or bumetanide and stimulated by extracellular Na+. The synergistic effect of Na+ and 86Rb+ uptake and K+ on 22Na+ uptake was reflected by an increase in the apparent Vmax and a decrease in the apparent Km as the concentration of the other cation was increased. The extrapolated Km for either 86Rb+ or 22Na+ uptake in the absence of the other cation was 30 mM while the Km in the presence of a saturating concentration of the other cation was 9 mM. The absolute Vmax values for 22Na+ and 86Rb+ uptake suggest a cotransport system with a stoichiometry of 2Na+:3K+. However, because of the experimental design, the actual ratio may be closer to 1:1. Competition with, and stimulation by, a variety of unlabeled cations indicated that Na+ could be partially replaced by Li+, while K+ could be fully replaced by Rb+ and partially replaced by NH4+ and CS+. Uptake by this system was dependent upon cellular ATP. Reduction of intracellular ATP to 3% of normal abolished both K+-stimulated 22Na+ uptake and Na+-stimulated 86Rb+ uptake.  相似文献   

7.
Three independent mutants of the Madin-Darby canine kidney cell line (MDCK) have been isolated which were capable of growth in media containing low concentrations of potassium. All three mutants were deficient to varying extents in furosemide- and bumetanide-sensitive 22Na+, 86+b+, and 36Cl- uptake. The two mutants most resistant to low K+ media had lost essentially all of the 22Na+, 86Rb+, and 36Cl- uptake activities of this system. The third mutant was partially resistant to low K+ media and had reduced levels of bumetanide-sensitive uptake for all three ions. Extrapolated initial uptake rates for 22Na+, 86Rb+, and 36Cl- revealed that the partial mutant exhibited approximately 50% of the parental uptake rates for all three ions. The stoichiometries of bumetanide-sensitive uptake in both the parental cell line and the partial mutant approximated 1 Rb+:1 Na+:2 Cl-. The results of this study provide genetic evidence for a single tightly-coupled NaCl/KCl symporter in MDCK cells. The correlation between the ability to grow in low K+ media and decreased activity of the bumetanide-sensitive co-transport system suggests that the bumetanide-sensitive transport system catalyzes net K+ efflux from cells in low K+ media. The results of 86Rb+ efflux studies conducted on ouabain-pretreated mutant and parental cells are consistent with this interpretation. Cell volume measurements made on cells at different densities in media containing normal K+ concentrations showed that none of the mutants differed significantly in volume from the parental strain at a similar cell density. Furthermore, all three mutants were able to readjust their volume after suspension in hypotonic media. These results suggest that in the MDCK cell line, the bumetanide-sensitive NaCl/KCl symport system does not function in the regulation of cell volume under the conditions employed.  相似文献   

8.
Squid axons display a high activity of Na+/Ca2+ exchange which is largely increased by the presence of external K+, Li+, Rb+ and NH+4. In this work we have investigated whether this effect is associated with the cotransport of the monovalent cation along with Ca2+ ions. 86Rb+ influx and efflux have been measured in dialyzed squid axons during the activation (presence of Ca2+i) of Ca2+o/Na+i and Ca2+i/Ca2+o exchanges, while 86Rb+ uptake was determined in squid optic nerve membrane vesicles under equilibrium Ca2+/Ca2+ exchange conditions. Our results show that although K+o significantly increases Na+i-dependent Ca2+ influx (reverse Na+/Ca2+ exchange) and Rb+i stimulates Ca2+o-dependent Ca2+ efflux (Ca2+/Ca2+ exchange), no sizable transport of rubidium ions is coupled to calcium movement through the exchanger. Moreover, in the isolated membrane preparation no 86Rb+ uptake was associated with Ca2+/Ca2+ exchange. We conclude that in squid axons although monovalent cations activate the Na+/Ca2+ exchange they are not cotransported.  相似文献   

9.
The effects of insulin and glucagon on the (Na+-K+)-ATPase transport activity in freshly isolated rat hepatocytes were investigated by measuring the ouabain-sensitive, active uptake of 86Rb+. The active uptake of 86Rb+ was increased by 18% (p less than 0.05) in the presence of 100 nM insulin, and by 28% (p less than 0.005) in the presence of nM glucagon. These effects were detected as early as 2 min after hepatocyte exposure to either hormone. Half-maximal stimulation was observed with about 0.5 nm insulin and 0.3 nM glucagon. The stimulation of 86Rb+ uptake by insulin occurred in direct proportion to the steady state occupancy of a high affinity receptor by the hormone (the predominant insulin-binding species in hepatocytes at 37 degrees C. For glucagon, half-maximal response was obtained with about 5% of the total receptors occupied by the hormone. Amiloride (a specific inhibitor of Na+ influx) abolished the insulin stimulation of 86Rb+ uptake while inhibiting that of glucagon only partially. Accordingly, insulin was found to rapidly enhance the initial rate of 22Na+ uptake, whereas glucagon had no detectable effect on 22Na+ influx. These results indicate that monovalent cation transport is influenced by insulin and glucagon in isolated rat hepatocytes. In contrast to glucagon, which appears to enhance 86Rb+ influx through the (Na+-K+)-ATPase without affecting Na+ influx, insulin stimulates Na+ entry which in turn may increase the pump activity by increasing the availability of Na+ ions to internal Na+ transport sites of the (Na+-K+)-ATPase.  相似文献   

10.
1. Ouabain-sensitive 86Rb+ uptake by tissue preparations has been used as an estimate of Na+ pump activity. This uptake, however, may be a measure of the Na+ influx rate, rather than capacity of the Na+ pump, since intracellular Na+ concentration is a determinant of the active Na+/Rb+ exchange reaction under certain conditions. This aspect was examined by studying the effect of altered Na+ influx rate on ouabain-sensitive 86Rb+ uptake in atrial preparations of guinea pig hearts. 2. Electrical stimulation markedly enhanced ouabain-sensitive 86Rb+ uptake without affecting nonspecific, ouabain-insensitive uptake. Paired-pulse stimulation studies indicate that the stimulation-induced enhancement of 86Rb+ uptake is due to membrane depolarizations, and hence related to the rate of Na+ influx. 3. Alterations in the extracellular Ca2+ concentration failed to affect the 86Rb+ uptake indicating that the force of contraction does not influence 86Rb+ uptake. 4. Reduced Na+ influx by low extracellular Na+ concentration decreased 86Rb+ uptake, and an increased Na+ influx by a Na+-specific ionophore, monensin, enhanced 86Rb+ uptake in quiescent atria. 5. Grayanotoxins, agents that increase transmembrane Na+ influx, and high concentrations of monensin appear to have inhibitory effects on ouabain-sensitive 86Rb+ uptake in electrically stimulated and in quiescent atria. 6. Electrical stimulation or monensin enhanced ouabain binding to (Na+ + K+)-ATPase and also increased the potency of ouabain to inhibit 86Rb+ uptake indicating that the intracellular Na+ available to the Na+ pump is increased under these conditions. 7. The ouabain-sensitive 86Rb+ uptake in electrically stimulated atria was less sensitive to alterations in the extracellular Na+ concentration, temperature and monensin than that in quiescent atria. 8. These results indicate that the rate of Na+ influx is the primary determinant of ouabain-sensitive 86Rb+ uptake in isolated atria. Electrical stimulation most effectively increases the Na+ available to the Na+ pump system. The ouabain-sensitive 86Rb+ uptake by atrial preparations under electrical stimulation at a relatively high frequency seems to represent the maximal capacity of the Na+ pump in this tissue.  相似文献   

11.
Neurotoxins which modify the gating system of the Na+ channel in neuroblastoma cells and increase the initial rate of 22Na+ influx through this channel also give rise to the efflux of 86Rb+ and 42K+. These effluxes are inhibited by tetrodotoxin and are dependent on the presence in the extracellular medium of cations permeable to the Na+ channel. These stimulated effluxes are not due to membrane depolarization or increases in the intracellular content of Na+ and Ca2+ which occur subsequent to the action of neurotoxins. The relationships of 22Na+ influx and 42K+ (or 86Rb+) effluxes to both the concentration of neurotoxins and the concentration of external permeant cations strongly suggest that the open form of the Na+ channel stabilized by neurotoxins permits an efflux of K+ ions. Our results indicate that for the efflux of each K+ ion there is a corresponding influx of two Na+ ions into the Na+ channel.  相似文献   

12.
The uptake of monovalent cations by yeast via the monovalent cation uptake mechanism is inhibited by phosphate. The inhibition of Rb+ uptake shows saturation kinetics and the phosphate concentration at which half-maximal inhibition is observed is equal to the Km of phosphate for the sodium-independent phosphate uptake mechanism. The kinetic coefficients of Rb+ and TI+ uptake are affected by phosphate: the maximal rate of uptake is decreased and the apparent affinity constants for the translocation sites are increased. In the case of Na+ uptake, the inhibition by phosphate may be partly or completely compensated by stimulation of Na+ uptake via a sodium-phosphate cotransport mechanism. Phosphate effects a transient stimulation of the efflux of the lipophilic cation dibenzyldimethylammonium from preloaded yeast cells and a transient inhibition of dibenzyldimethylammonium uptake. Possibly, the inhibition of monovalent cation uptake in yeast can be explained by a transient depolarization of the cell membrane by phosphate.  相似文献   

13.
H Rottenberg  R E Koeppe 《Biochemistry》1989,28(10):4361-4367
Gramicidin and the truncated derivatives desformylgramicidin (desfor) and des(formylvalyl)gramicidin (desval) stimulate monovalent cation transport in rat liver mitochondria. Cation fluxes were compared indirectly from the effect of cations on the membrane potential at steady state (state 4) or from the associated stimulation of electron transport. Rb+ transport was measured directly from the uptake of 86Rb. The truncated gramicidins show enhanced selectivity for K+ and Rb+ when compared to gramicidin. Moreover, the pattern of selectivity within the alkali cation series is altered, i.e., Rb+ greater than K+ greater than Cs+ greater than Na+ greater than Li+ for desfor and desval as compared to Cs+ greater than Rb+ greater than K+ = Na+ greater than Li+ for gramicidin. The cation fluxes through the truncated derivatives are more strongly dependent on the cation concentration. The presence of high concentrations of permeating cation enhances the transport of other cations through the truncated derivative channels, suggesting that cations are required for stabilizing the channel structure. In high concentrations of KCl, desfor and desval are nearly as effective as gramicidin in collapsing the mitochondrial membrane potential, and, consequently, in the uncoupling of oxidative phosphorylation and enhancement of ATP hydrolysis. Preliminary experiments with liposomes show that 86Rb exchange is stimulated by desfor and desval almost to the same extent as gramicidin. These results strongly suggest that the truncated gramicidins form a novel conducting channel which differs from the gramicidin head-to-head, single-stranded beta 6.3-helical dimer ("channel") in its conductance characteristic and its structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Experiments were performed to probe the mechanism by which Bacillus anthracis Lethal Toxin (LeTx) causes lysis of J774 macrophage-like cells. After incubation of cells with saturating concentrations of the toxin, two categories of effects were found, which were distinguishable on the basis of chronology, Ca(2+)-dependence, and sensitivity to osmolarity. The earliest events (category I), beginning 45 min postchallenge, were an increase in permeability to 22Na and 86Rb and a rapid conversion of ATP to ADP and AMP. Later events (category II) included alterations in membrane permeability to 45Ca, 51Cr, 36Cl, 35SO4, 3H-amino acids, and 3H-uridine, beginning at 60 min; inhibition of macromolecular synthesis, leakage of cellular lactate dehydrogenase and onset of gross morphological changes, at approximately 75 min; and cell lysis, beginning at 90 min. Category II events exhibited an absolute requirement for extracellular Ca2+ and were blocked by addition of 0.3 M sucrose to the medium, whereas category I events were attenuated, but not blocked, by either of these conditions. On the other hand, both ATP depletion and the category II events were blocked in osmotically stabilized medium that was also isoionic for Na+ and K+. This suggests that permeabilization of the plasma membrane to monovalent cations and water may be the earliest of the physiological changes described here. The resulting influx of Na+ and efflux of K+ would be expected to cause depletion of ATP, via increased activity of the Na+/K+ pump. Subsequently the influx of Ca2+, induced by depletion of ATP, imbalances in monovalent cautions, and/or more dramatic changes in permeability due to influx of water, would be expected to trigger widespread changes leading ultimately to cytolysis.  相似文献   

15.
Isolated hepatocytes from the elasmobranch Raja erinacea were examined for their regulatory responses to a solute load following electrogenic uptake of L-alanine. The transmembrane potential (Vm) was measured with glass microelectrodes filled with 0.5 M KCl (75 to 208 M omega in elasmobranch Ringer's solution) and averaged -61 +/- 16 mV (S.D.; n = 68). L-Alanine decreased (depolarized) Vm by 7 +/- 3 and 18 +/- 2 mV at concentrations of 1 and 10 mM, respectively. Vm did not repolarize to control values during the 5-10 min impalements, unless the amino acid was washed away from the hepatocytes. The depolarizing effect of L-alanine was dependent on external Na+, and was specific for the L-isomer of alanine, as D- and beta-alanine had no effect. Hepatocyte Vm also depolarized on addition of KCN or ouabain, or when external K+ was increased. Rates of 86Rb+ uptake and efflux were measured to assess the effects of L-alanine on Na+/K+-ATPase activity and K+ permeability, respectively. Greater than 80% of the 86Rb+ uptake was inhibited by 2 mM ouabain, or by substitution of choline+ for Na+ in the incubation media. L-Alanine (10 mM) increased 86Rb+ uptake by 18-49%, consistent with an increase in Na+/K+ pump activity, but had no effect on rubidium efflux. L-Alanine, at concentrations up to 20 mM, also had no measurable effect on cell volume as determined by 3H2O and [14C]inulin distribution. These results indicate that Na+-coupled uptake of L-alanine by skate hepatocytes is rheogenic, as previously observed in other cell systems. However, in contrast to mammalian hepatocytes, Vm does not repolarize for at least 10 min after the administration of L-alanine, and changes in cell volume and potassium permeability are also not observed.  相似文献   

16.
Cation transport systems were investigated in mutant Madin-Darby Canine Kidney (MDCK) cells resistant to the diuretic drug amiloride. The mutants were isolated previously as clones resistant to the cytotoxic effects of 3 X 10(-4) M amiloride. Decreased amiloride transport by the Na+ channel was implicated as the basis of the resistance (Taub, '78). Consistent with this hypothesis, Na+ accumulation was lower in amiloride-resistant cells than in normal sensitive MDCK cells. Kinetic studies indicated that Na+ uptake in MDCK cells occurs by a single ATP independent transport system--the Na+ channel. In several amiloride-resistant clones, including clone Amr2, the decreased Na+ uptake was associated with a decrease in both the Km and Vmax for Na+ uptake by the Na+ channel. In Amr2 cells no significant alteration in the inhibitory effect of amiloride on Na+ uptake was observed. As the Na+ channel may actually be a general uptake system for monovalent cations (a number of cations inhibit Na+ uptake), the uptake of these inhibitory cations was examined in Amr2 cells. Both Ca++ and ouabain-insensitive Rb+ uptake occurred at decreased rates in Amr2 cells as compared with normal MDCK cells. However, further uptake studies suggested that Na+, Ca++ and ouabain-insensitive Rb+ uptake all occur by different systems. Thus several transport systems may be defective in Amr2 cells. Amr2 cells were also resistant to the inhibitory effects of amiloride on CO2 evolution from pyruvate. These observations indicate that alterations at a number of molecular sites may be associated with defective Na+ transport via the Na+ channel in amiloride-resistant cells. Thus the amiloride-resistant cells are potentially valuable in examining the interrelationships between Na+ transport and other cellular functions.  相似文献   

17.
We have investigated the characteristics of a transport system in HeLa cells, which turned out to be very similar to a previously described Na+, K+, 2Cl- -cotransport system. For further understanding about the physiological role of the cotransporter, we have mutagenized HeLa cells and selected progeny cells for growth in low potassium (0.2 mM) medium. The selected HeLa cells (LK1) exhibited alterations in the Na+,K+,2Cl- -cotransport system. LK1 cells showed a remarkable reduction of 86Rb+ efflux via the cotransporter when compared to the parental HeLa cells. In contrast, bumetanide-sensitive potassium influx, measured by 86Rb+ uptake, was increased in the LK1 cells (increase in Vmax). Km values of the cotransporter in HeLa cells and LK1 mutants revealed similar properties for 86Rb+ and 22Na+ uptake. In addition, (3H)-bumetanide binding studies were carried out on intact HeLa cells; 1.7 pmol/mg protein (3H)-bumetanide was specifically bound to HeLa parental cells, which could be calculated to a number of 103,000 binding sites/cell. LK1 cells present, 1.44 pmol/mg protein, specifically bound (3H)-bumetanide and, respectively, 137,000 binding sites/cell. The LK1 cells also exhibited an increase in the number of (3H)-ouabain binding sites as well as an increase in the activity of the Na+,K+-ATPase, expressed as a function of ouabain-sensitive 86Rb+ uptake. Furthermore, LK1 cells were different in the concentrations of intracellular Na+ (increases) and K+ (decreases) when compared to the HeLa parental cells. When grown in low K+ medium (0.2 mM K+), protein content and cell volume were increased in the LK1 cells, while the DNA content was not significantly different between both cell lines.  相似文献   

18.
The relationship between Na entry and the activity of the Na-K pump has been investigated in a variety of cell types by testing the effect of the Naionophore monensin, mitogenic stimulation with serum and oncogenic transformation by SV40 and polyoma virus. We found that addition of monensin increases intracellular Na in quiescent cultures of murine, hamster, and human cells. In each case, the rise in intracellular Na by monensin is associated with an increase in the activity of the Na-K pump, which was measured as ouabain-inhibitable 86Rb uptake. The addition of serum to quiescent cultures stimulates 86Rb uptake in all cell types studied. Serum alone causes an increase in intracellular potassium with no consistent change in intracellular Na. In the presence of the Na-K pump inhibitor ouabain, serum causes a marked increase in intracellular Na, with little change in intracellular K. This pattern is interpreted as indicating that the primary effect of serum is to increase Na entry into the cells. A low concentration of monensin (0.2 μg/ml) mimics the effect of serum on ion fluxes and content, which supports the conclusion that serum and monensin stimulate 86Rb uptake in the same manner, namely by increasing Na entry into the cells. In addition, a partially purified platelet extract stimulates Na entry and 86Rb uptake in quiescent 3T3 cells. Finally 3T3 cells transformed by SV40 or polyoma virus exhibit a higher rate of Na entry and of Na-K pump activity than their untransformed 3T3 counterparts. All these results indicate that the rate of Na entry plays an important role in the regulation of the activity of the Na-K pump and that an increase in Na and K movements is a rapid response elicited by serum in a variety of cell types.  相似文献   

19.
Cultured chick cardiac cells possess a Na+K+Cl-co-transport system that is inhibited by the "loop diuretics" benzmetanide (IC50 = 0.3 microM), bumetanide (IC50 = 0.6 microM), piretanide (IC50 = 1.5 microM) and furosemide (IC50 = 5 microM). The K0.5 values for Cl- and Na+ activation of the bumetanide-sensitive 86Rb+ uptake are 59 mM and 40mM respectively. Bumetanide also inhibits a 22Na+ uptake component that is suppressed when external Cl- or K+ are substituted by impermeant ions. The ratio of bumetanide-sensitive 86Rb+ to 22Na+ uptake is close to 1. The cardiac Na+/K+/Cl- cotransport is a major uptake pathway for Na+ and K+. It accounts for 50% of the initial rate of 86Rb+ uptake and 17% of the initial rate of 22Na+ uptake by chick cardiac cells. It is activated two-fold by an hyperosmotic shock produced with 200 mM mannitol.  相似文献   

20.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号