首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified bovine caudate tyrosine hydroxylase can be activated by exposure to enzymatic phosphorylating conditions. This activation is due to both a decrease in the Km for the pterin cofactor and to some increase in Vmax. The Km for the enzyme's substrate, tyrosine, is unchanged by activation. After tyrosine hydroxylase was activated in the presence of [γ-32P]-ATP, no incorporation of 32P into the enzyme was observed by either immunoprecipitation studies or by sucrose gradient studies.  相似文献   

2.
We have examined the ability of a number of neuropeptides to increase tyrosine hydroxylase (TH) activity in the superior cervical ganglion in vitro. Secretin and vasoactive intestinal peptide (VIP) both increased TH activity, whereas angiotensin II, bombesin, bradykinin, cholecystokinin octapeptide, insulin, luteinizing hormone-releasing hormone, [D-Ala2, Met3]enkephalinamide, motilin, neurotensin, somatostatin, and substance P produced no effects. Secretin and VIP increased TH activity with an EC50 of 5 nM and 0.5 μM, respectively. The effects of these peptides were not altered by prior decentralization of the ganglia, by addition of hexamethonium (3 mM) and atropine (6 μM), or by lowering the concentration of calcium in the medium to 0.1 mM. Addition of carbachol (3 μM) potentiated the effects of both secretin and VIP on TH activity. Several gastrointestinal peptides with structural similarities to secretin and VIP were examined for their ability to increase TH activity. Glucagon, gastric inhibitory peptide and human pancreatic tumor growth hormone-releasing factor produced no effect at a concentration of 10 μM, while PHI increased enzyme activity.  相似文献   

3.
The incubation of the 35,000 g supernatant of a rat brain stem homogenate in the presence of 7.5 mM-CaC12 for 10 min at 25°C resulted in a more than 2-fold increase in its tryptophan hydroxylase activity. This activation was irreversible and involved a reduction in the molecular weight of the enzyme, from 220,000 to 160,000. The partially proteolysed tryptophan hydroxylase, in contrast to the native enzyme, could not be activated by trypsin, sodium dodecyl sulphate, phosphatidylserine or phosphorylating conditions; dithiothreitol and Fe2+ were the only compounds whose stimulating effect on the enzymatic activity was not prevented by the Ca2+ -induced proteolysis of tryptophan hydroxylase. These findings suggest that the mol. wt. 60,000 fragment removed by the Ca2+ dependent neutral proteinase plays a critical role in the regulatory properties of tryptophan hydroxylase.  相似文献   

4.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is activated following phosphorylation by the cAMP-dependent protein kinase (largely by decreasing the Km of the enzyme for its pterin co-substrate). Following its phosphorylation activation in rat striatal homogenates, we find that tyrosine hydroxylase is inactivated by two distinct processes. Because cAMP is hydrolyzed in crude extracts by a phospho-diesterase, cAMP-dependent protein kinase activity declines following a single addition of cAMP. When tyrosine hydroxylase is activated under these transient phosphorylation conditions, inactivation is accompanied by a reversion of the activated kinetic form (low apparent Km for pterin co-substrate, ≤0.2 mM) to the kinetic form characteristic of the untreated enzyme (high apparent Km, ≥1.0 mM). This inactivation is readily reversed by the subsequent addition of cAMP. When striatal tyrosine hydroxylase is activated under constant phosphorylation conditions (incubated with purified cAMP-dependent protein kinase catalytic subunit), however, it is also inactivated. This second inactivation process is irreversible and is characterized kinetically by a decreasing apparent Vmax with no change in the low apparent Km for pterin co-substrate (0.2 mM). The latter inactivation process is greatly attenuated by gel filtration which resolves a low-molecular-weight inactivating factor(s) from the tyrosine hydroxylase. These results are consistent with a regulatory mechanism for tyrosine hydroxylase involving two processes: in the first case, reversible phosphorylaton and dephos-phorylation and, in the second case, an irreversible loss of activity of the phosphorylated form of tyrosine hydroxylase.  相似文献   

5.
The present studies investigated the subcellular distribution of acetylcholine's effects upon the phosphorylation of tyrosine hydroxylase in isolated purified bovine adrenal chromaffin cells. After labeling the intact chromaffin cells with 32Pi, over 90% of the [32P]tyrosine hydroxylase was found in soluble fractions. Stimulation of the cells with acetylcholine, the natural secretagogue of chromaffin cells, increased the phosphorylation of tyrosine hydroxylase and over 90% of the increase was associated with soluble tyrosine hydroxylase. Homogenates and subcellular fractions from chromaffin cells were also prepared and phosphorylated in vitro in an attempt to optimize detection of tyrosine hydroxylase phosphorylation. In chromaffin cell homogenates, both 8-bromo-cyclic AMP and calcium increased 32P incorporation into tyrosine hydroxylase, and again over 90% of the increase was observed in soluble fractions. In the particulate fraction, phosphorylation of a band which comigrated with tyrosine hydroxylase in electrophoresis was occasionally detected but only with very long autoradiographic exposures.Tyrosine hydroxylase enzymatic activity in the isolated purified chromaffin cells was also found to be associated predominantly (approx 90%) with soluble fractions. In contrast, a large portion (40–50%) of the tyrosine hydroxylase activity from crude bovine adrenal medullae was associated with the particulate fraction.The data indicate that although tyrosine hydroxylase (and possibly kinases) can associate with particulate fractions when isolated from crude bovine adrenal medullae, the enzyme is predominantly soluble when isolated from the isolated cells. Further, the effects of acetylcholine on the isolated chromaffin cells are predominantly associated with this soluble tyrosine hydroxylase and its attendant kinases.  相似文献   

6.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

7.
Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which l-dopa is formed from the substrate l-tyrosine. l-Dopa concentration and activity of l-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum l-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH4, and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K m value of 808.63 μM for l-tyrosine at 37°C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 μM l-tyrosine. Higher concentrations of the cofactor 6-MPH4, however, completely inhibited the synthesis of l-dopa. Tyrosine hydroxylase converted specific monophenols such as l-tyrosine (808.63 μM) and tyramine (K m 1.1 mM) to diphenols l-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.  相似文献   

8.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferase (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rate limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate.For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1-14 C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U-14C] acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studies gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

9.
Abstract– Detergent-solubilized tyrosine hydroxylase from the caudate nucleus of the sheep was purified 3-fold by affinity chromatography on 3-iodotyrosine modified agarose. Supplementation of the standard assay with 1 mM Fe2+ resulted in only slight stimulation of the enzymic activity. The enzyme was, however, markedly inhibited by certain complexing agents specific for either Fe2+ or Fe3+. Double reciprocal plots of the kinetic data for a representative complexing agent, bathophenanthroline, showed the inhibition to be competitive with O2 (apparent Km 0.15 mM) and noncompetitive with either l -tyrosine or the synthetic tetrahydropterin cofactor DMPH4 (apparent Km's 0.12 and 0.29 mM, respectively). The combined inhibition and kinetics studies strongly suggest that brain tyrosine hydroxylase is an iron enzyme. Furthermore, the prosthetic iron very likely participates directly in catalytic function, presumably by binding molecular oxygen. The activity of ammonium sulphate-precipitated enzyme was found to be stimulated 2-fold by Fe2+, catalase or peroxidase, while untreated enzyme was markedly less affected by these agents. Since the only ostensible difference between the two preparations was the extensive aggregation present in the former case, the change in physical state evoked by ammonium sulphate precipitation appeared to be somehow related to this peculiar property of the enzyme.  相似文献   

10.
We studied the phosphorylation of tyrosine hydroxylase in the superior cervical ganglion of the rat. Ganglia were preincubated with [32P]Pi and were then incubated in non-radioactive medium containing a variety of agents that are known to activate tyrosine hydroxylase in this tissue. Tyrosine hydroxylase was isolated from homogenates of the ganglia by immunoprecipitation followed by polyacrylamide gel electrophoresis. 32P-labelled tyrosine hydroxylase was visualized by radioautography, and the incorporation of 32P into the enzyme was quantitated by densitometry of the autoradiograms. Veratridine produced a concentration-dependent increase in the incorporation of 32P into tyrosine hydroxylase, with 50 μM veratridine producing a 5-fold increase in 32P incorporation. The nicotinic agonist, dimethylphenylpiperazinium (100 μM), caused a 7-fold increase in the phosphorylation of tyrosine hydroxylase. The effect of dimethylphenylpiperazinium was maximal within 1 min and decreased upon continued exposure of the ganglia to this agent. The actions of dimethylphenylpiperazinium and of veratridine were dependent on extracellular Ca2+. Muscarine, 8-Br-cAMP, forskolin, vasoactive intestinal peptide, isoproterenol, deoxycholate and phospholipase C also stimulated the incorporation of 32P into tyrosine hydroxylase. These data support the hypothesis that phosphorylation plays a role in activation of tyrosine hydroxylase produced by all of these agents.  相似文献   

11.
Calcium-dependent activation of tryptophan hydroxylase by ATP and magnesium   总被引:10,自引:0,他引:10  
Tryptophan hydroxylase [EC 1.14.16.4; L-tryptophan, tetrahydropteridine: oxygen oxidoreductase (5-hydroxylating)] in rat brainstem extracts is activated 2 to 2.5-fold by ATP and Mg++ in the presence of subsaturating concentrations of the cofactor 6-methyltetrahydropterin (6MPH4). The activation of tryptophan hydroxylase under these conditions results from a reduction in the apparent Km for 6MPH4 from 0.21 mM to 0.09 mM. The activation requires Mg++ and ATP but is not dependent on either cAMP or cGMP. The effect of ATP and Mg++ on enzyme activity was enhanced by μM concentrations of Ca++ and totally blocked by EGTA. These data suggest that tryptophan hydroxylase can be activated by a cyclic nucleotide independent protein kinase which requires low calcium concentrations for the expression of its activity.  相似文献   

12.
A peptidase inactivating neurotensin at the Pro10-Tyr11 peptidyl bond, leading to the biologically inactive fragments neurotensin1–10 and neurotensin11–13 was purified from rat brain homogenate. The peptidase was characterized as a 70 kDa monomer and could be classified as a metaliopeptidase with respect to its sensitivity to o-phenanthroline, EDTA and divalent cations. The enzyme was also strongly inhibited by dithiothreitol but appeared totally insensitive to thiol-blocking agents, acidic and serine protease inhibitors. Experiments performed with a series of highly specific peptidase inhibitors clearly indicated that the peptidase was a novel enzyme distinct from previously purified cerebral peptidases. The enzyme displayed a rather high affinity for neurotensin (Km = 2.3 itM). Studies on its specificity indicated that: (i) neurotensin9–13 was the shortest neurotensin fragment with full inhibitory potency of [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule progressively led to inactive analogs; (ii) the peptidase exhibited a strong stereospecificity towards the residues in positions 8, 9 and 11. By contrast, neither introduction of a steric hindrance in position 11 nor amidation of the C-terminal end of the neurotensin molecule affected the ability of the corresponding analog to inhibit [3H]neurotensin degradation; (iii) Pro-Phe was the most potent dipeptide to compete for [3H]neurotensin degradation; (iv) the peptidase could not be described as an exclusive “neurotensinase” activity since, in addition to the neurotensin natural analogs (neuromedin N and xenopsin), non related natural peptides such as angiotensins I and II, dynorphins 1–8 and 1–13, atriopeptin III and bradykinin potently inhibited [3H]neurotensin degradation. Most of these peptides behaved as substrates for the enzyme.  相似文献   

13.
Abstract: Tyrosine hydroxylase activity is reversibly modulated by the actions of a number of protein kinases and phosphoprotein phosphatases. A previous report from this laboratory showed that low-molecular-weight substances present in striatal extracts lead to an irreversible loss of tyrosine hydroxylase activity under cyclic AMP-dependent phosphorylation conditions. We report here that ascorbate is one agent that inactivates striatal tyrosine hydroxylase activity with an EC50 of 5.9 μM under phosphorylating conditions. Much higher concentrations (100 mM) fail to inactivate the enzyme under nonphosphorylating conditions. Isoascorbate (EC50, 11 μM) and dehydroascorbate (EC50, 970 μM) also inactivated tyrosine hydroxylase under phosphorylating but not under nonphosphorylating conditions. In contrast, ascorbate sulfate was inactive under phosphorylating conditions at concentrations up to 100 mM. Since the reduced compounds generate several reactive species in the presence of oxygen, the possible protecting effects of catalase, peroxidase, and superoxide dismutase were examined. None of these three enzymes, however, afforded any protection against inactivation. We also examined the effects of ascorbate and its congeners on the activity of tyrosine hydroxylase purified to near homogeneity from a rat pheochromocytoma. This purified enzyme was also inactivated by the same agents that inactivated the impure corpus striatal enzyme. Under conditions in which ascorbate almost completely abolished enzyme activity, we found no indication for significant prote-olysis of the purified enzyme as determined by sodium do-decyl sulfate-polyacrylamide gel electrophoresis. We also found that pretreatment of PC12 cells in culture for 4 h with 1 mM ascorbate, dehydroascorbate, or isoascorbate (but not ascorbate sulfate) also decreased tyrosine hydroxylase activity 25–50%. The inactivation seen under in vitro conditions appears to have a counterpart under more physiological conditions.  相似文献   

14.
S Knapp  A J Mandell  W P Bullard 《Life sciences》1975,16(10):1583-1593
Using both radioisotopic and fluorometric techniques to measure the activity of midbrain soluble enzyme, we have demonstrated that calcium activates tryptophan hydroxylase. The observed activation apparently results from an increased affinity of the enzyme for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). The calcium activation of tryptophan hydroxylase appears to be specific for both enzyme and effector: other brain neurotransmitter biosynthetic enzymes, such as aromatic amino acid decarboxylase(s) and tyrosine hydroxylase, are not affected by calcium (at concentrations ranging from 0.01 mM to 2.0 mM); other divalent cations, such as Ba++, Mg++, and Mn++, have no activating effect on tryptophan hydroxylase. This work suggests that increases in brain serotonin biosynthesis induced by neural activation may be due to influx of Ca++ associated with membrane depolarization and resulting activation of nerve ending tryptophan hydroxylase.  相似文献   

15.
A. Martínez 《Amino acids》1995,9(3):285-292
Summary Recombinant human tyrosine hydroxylase isozyme 1 (hTH1) shows a time- and concentration-dependent loss of catalytic activity when incubated with diethylpyrocarbonate (DEP) after reconstitution with Fe(II). The inactivation follows pseudo-first order kinetics with a second order rate constant of 300 M–1 min–1 at pH 6.8 and 20°C and is partially reversed by hydroxylamine. The difference absorption spectrum of the DEP-modified vs native enzyme shows a peak at 244 nm, characteristic of mono-N-carbethoxy-histidine. Up to five histidine residues are modified per enzyme subunit by a five-fold excess of the reagent, and two of them are protected from inactivation by the active site inhibitor dopamine. However, derivatization of only one residue appears to be responsible for the inactivation. Thus, no inactivation by DEP was found when the apoenzyme was preincubated with this reagent prior to its reconstitution with Fe(II), modifying four histidine residues.Abbreviations BH4 (6R)-l-erythro-tetrahydrobiopterin - DEP diethylpyrocarbonate - DOPA 3,4-dihydroxyphenylalanine - hTH1 human tyrosine hydroxylase isoenzyme 1 - apo-hTH1 apoenzyme of hTH1 - Fe(II)-hTH1 holoenzyme (iron reconstituted) of hTH1 - dopamine-Fe(III)-hTH1 holoenzyme of hTH1 with dopamine bound - TH tyrosine hydroxylase  相似文献   

16.
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.  相似文献   

17.
Tyrosine hydroxylase was purified from bovine corpus striatum. The native enzyme had a half-life of 15 +/- 3 min at 50 degrees C. Phosphorylation of tyrosine hydroxylase with protein kinase purified from both corpus striatum and heart activated the enzyme, but activity was rapidly lost with additional preincubation of the enzyme at 30 degrees C. Thermal denaturation studies indicated that phosphorylated tyrosine hydroxylase had a half-life of 5 +/- 2 min at 50 degrees C  相似文献   

18.
An i.p. injection of normal saline combined with 1 min handling when repeated 14 times results in an increase in noradrenaline synthesis in synaptosomes prepared from the cortex of stressed rats; at 24 h synthesis acceleration is greater than at 48 h after the last stress.The activity of tyrosine hydroxylase solubilised from the hippocampus is the same in the control and the stressed group, when assayed at the optimal pH of 5.8 and with saturating concentration (2 mM) of the cofactor 6 MPH4. However enzyme from stressed rats shows a relative increase in the activity at pH 7.4 assayed in the presence of 0.2 mM 6 MPH4. This indicates activation, not induction, of the enzyme. 8-Br-cAMP produced the same increase in noradrenaline synthesis in cortical synaptosomes from control and stressed rats; however 50 mM K+ did not increase synthesis rate in stressed rats. Furthermore in synaptosomes from stressed rats neither isoprenaline (which increases noradrenaline synthesis) nor clonidine with 50 mM K+ (which leads to a depression of the K+-accelerated synthesis) had any effect on synthesis rate. The results suggest that the increased noradrenaline synthesis rate in cortical synaptosomes from stressed rats represents a Ca2+-dependent activation of tyrosine hydroxylase resulting from the desensitisation of alpha2-autoreceptors.  相似文献   

19.
L T Murthy 《Life sciences》1975,17(12):1777-1783
Inhibitors of phenylalanine hydroxylase and tyrosine hydroxylase were used in the assay of phenylalanine hydroxylase in liver and kidney of rats and mice. Parachlorophenylalanine (PCPA), methyl tyrosine methyl ester and dimethyl tyrosine methyl ester showed 5–15% inhibition while α-methyl tyrosine seemed to inhibit phenylalanine hydroxylase to the extent of 95–98% at concentrations of 5 × 10 −5M –1 × 10 −4M. After a phenylketonuric diet (0.12% PCPA + 3% excess phenylalanine), the liver showed 60% phenylalanine hydroxylase activity and kidney 82% that present in pair-fed normals. Hepatic activity was normal after 8 days refeeding normal diet whereas kidney showed 63% of normal activity. The PCPA-fed animals showed 34% in liver and 38% in kidney as compared to normals; in both cases normal activity was noticed after refeeding. The phenylalanine-fed animals showed activity similar to that seen in phenylketonuric animals. The temporary inducement of phenylketonuria in these animals may be due to a slight change in conformation of the phenylalanine hydroxylase molecule; once the normal diet is resumed, the enzyme reverts back to its active form. This paper also suggests that α-methyl tyrosine when fed in conjunction with the phenylketonuric diet may suppress phenylalanine hydroxylase activity completely in the experimental animals thus yielding normal tyrosine levels as seen in human phenylketonurics.  相似文献   

20.
Soluble tyrosine hydroxylase from human pheochromocytoma, bovine adrenal medulla and rat striatum can be activated by Mg2+, ATP and cyclic AMP. In pheochromocytoma, this activation is due to a decreased Km for the pterin cofactor, whereas in adrenal medulla, it is a result of an increase in the Vmax. Norepinephrine increases the Km for pterin cofactor for tyrosine hydroxylase from both of these tissues. The Ki for norepinephrine is not altered by the presence of Mg2+, ATP and cyclic AMP with enzyme from pheochromocytoma or adrenal medulla. On the other hand, striatal tyrosine hydroxylase shows a two-fold increase in the Ki for dopamine after exposure to Mg2+, ATP and cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号