首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interesting property of the Escherichia coli DNA polymerase II is the stimulation in DNA synthesis mediated by the DNA polymerase III accessory proteins beta,gamma complex. In this paper we have studied the basis for the stimulation in pol II activity and have concluded that these accessory proteins stimulate pol II activity by increasing the processivity of the enzyme between 150- and 600-fold. As is the case with pol III, processive synthesis by pol II requires both beta,gamma complex and SSB protein. Whereas the intrinsic velocity of synthesis by pol II is 20-30 nucleotides per s with or without the accessory proteins, the processivity of pol II is increased from approximately five nucleotides to greater than 1600 nucleotides incorporated per template binding event. The effect of the accessory proteins on the rate of replication is far greater on pol III than on pol II; pol III holoenzyme is able to complete replication of circular single-stranded M13 DNA in less than 20 s, whereas pol II in the presence of the gamma complex and beta requires approximately 5 min. We have investigated the effect of beta,gamma complex proteins on bypass of a site-specific abasic lesion by E. coli DNA polymerases I, II, and III. All three polymerases are extremely inefficient at bypass of the abasic lesion. We find limited bypass by pol I with no change upon addition of accessory proteins. pol II also shows limited bypass of the abasic site, dependent on the presence of beta,gamma complex and SSB. pol III shows no significant bypass of the abasic site with or without beta,gamma complex.  相似文献   

2.
Tomer G  Livneh Z 《Biochemistry》1999,38(18):5948-5958
DNA damage-induced mutations are formed when damaged nucleotides present in single-stranded DNA are replicated. We have developed a new method for the preparation of gapped plasmids containing site-specific damaged nucleotides, as model DNA substrates for translesion replication. Using these substrates, we show that the DNA polymerase III holoenzyme from Escherichia coli can bypass a synthetic abasic site analogue with high efficiency (30% bypass in 16 min), unassisted by other proteins. The theta and tau subunits of the polymerase were not essential for bypass. No bypass was observed when the enzyme was assayed on a synthetic 60-mer oligonucleotide carrying the same lesion, and bypass on a linear gapped plasmid was 3-4-fold slower than on a circular gapped plasmid. There was no difference in the bypass when standing-start and running-start replication were compared. A comparison of translesion replication by DNA polymerase I, DNA polymerase II, the DNA polymerase III core, and the DNA polymerase III holoenzyme clearly showed that the DNA polymerase III holoenzyme was by far the most effective in performing translesion replication. This was not only due to the high processivity of the pol III holoenzyme, because increasing the processivity of pol II by adding the gamma complex and beta subunit, did not increase bypass. These results support the model that SOS regulation was imposed on a fundamentally constitutive translesion replication reaction to achieve tight control of mutagenesis.  相似文献   

3.
The alpha subunit (140 kDa) of DNA polymerase III (pol III) holoenzyme has been purified to near-homogeneity from a plasmid-carrying Escherichia coli strain which overproduced the alpha subunit about 20-fold. Pol III core (containing only the alpha, epsilon, and theta subunits), produced at twice the normal level, was also purified in good yield. The isolated alpha subunit has DNA polymerase activity, which is completely inhibited by 10 mM N-ethylmaleimide or 150 mM KCl as observed in the pol III core or holoenzyme. The alpha subunit has an apparent turnover number of 7.7 nucleotides polymerized per s, compared to 20 for pol III core, and is more thermolabile. The alpha subunit lacks the 3'----5' exonuclease (proofreading) activity of pol III core; neither alpha subunit nor core (nor holoenzyme) possesses any of the previously reported 5'----3' exonuclease activity. Thus, the alpha polypeptide is the polymerase subunit and epsilon (27 kDa) is the proofreading subunit (Scheuermann, R. H., and Echols, H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7747-7751). Together with the theta polypeptide (10 kDa), of unknown function, they form a pol III core with greater stability and catalytic efficiency.  相似文献   

4.
Pol III, a subassembly of Escherichia coli DNA polymerase III holoenzyme lacking only the auxiliary beta subunit, was purified to homogeneity by an improved procedure. This assembly consists of nine different polypeptides, likely in a 1:1 stoichiometry: a catalytic core (pol III) of alpha (132 kDa), epsilon (27 kDa), and theta (10 kDa), and six auxiliary subunits: tau (71 kDa), gamma (52 kDa), delta (35 kDa), delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The assembly behaves on gel filtration as a particle of about 800 kDa, indicating a content of two each of the subunits. A new procedure for purifying the core yielded a novel dimeric form which may provide the foundation for the dimeric nature of the more complex pol III and holoenzyme forms. Pol III readily dissociates into several subassemblies including pol III', likely a dimeric core with two tau subunits. The holoenzyme, purified by a similar procedure with ATP and Mg2+ present throughout, retained the beta subunit (37 kDa) as well as all the subunits present in pol III; the mass of the holoenzyme was estimated to be 900 kDa. The isolated initiation complex of holoenzyme with a primed template DNA and the elongation complex (formed in the presence of three deoxynucleoside triphosphates) had the same composition and stoichiometry as observed for pol III with two beta dimers in addition. An initiation complex assembled from a mixture of monomeric pol III core, gamma 2 delta delta' chi psi complex (gamma complex), beta, and tau retained the core, one beta dimer, and two tau subunits but was deficient in the gamma complex. When tau was omitted from the assembly mixture, the initiation complex contained one or two gamma complexes instead of the tau subunit. Based on these data, pol III holoenzyme is judged to be an asymmetric dimeric particle with twin pol III core active sites and two different sets of auxiliary units designed to achieve essentially concurrent replication of both leading and lagging strand templates.  相似文献   

5.
Purified DNA polymerase III holoenzyme (holoenzyme) was separated by glycerol gradient sedimentation into the beta subunit and the subassembly that lacks it (pol III). In the presence of ATP, beta subunit dimer dissociated from holoenzyme with a KD of 1 nM; in the absence of ATP, the KD was greater than 5 nM. The beta subunit was known to remain tightly associated in the holoenzyme upon formation of an initiation complex with a primed template and during the course of replication. With separation from the template, holoenzyme dissociated into beta and pol III. Cycling to a new template depended on the reformation of holoenzyme. Holoenzyme was in equilibrium with pol III and the beta subunit in crude enzyme fractions as well as in pure preparations.  相似文献   

6.
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.  相似文献   

7.
We have previously demonstrated that the addition of a stoichiometric excess of the beta subunit of Escherichia coli DNA polymerase III holoenzyme to DNA polymerase III or holoenzyme itself can lead to an ATP-independent increase in the processivity of these enzyme forms (Crute, J. J., LaDuca, R. J., Johanson, K. O., McHenry, C. S., and Bambara, R. A. (1983) J. Biol. Chem. 258, 11344-11349). Here, we show that the beta subunit can interact directly with the catalytic core of the holoenzyme, DNA polymerase III, generating a new form of the enzyme with enhanced catalytic and processive capabilities. The addition of saturating levels of the beta subunit to the core DNA polymerase III enzyme results in as much as a 7-fold stimulation of synthetic activity. Two populations of DNA products were generated by the DNA polymerase III X beta enzyme complex. Short products resulting from the addition of 5-10 nucleotides/primer fragment were generated by DNA polymerase III in the presence and absence of added beta subunit. A second population of much longer products was generated only in beta-supplemented DNA polymerase III reactions. The DNA polymerase III-beta reaction was inhibited by single-stranded DNA binding protein and was unaffected by ATP, distinguishing it from the holoenzyme-catalyzed reaction. Complex formation of the DNA polymerase III core enzyme with beta increased the residence time of the enzyme on synthetic DNA templates. Our results demonstrate that the beta stimulation of DNA polymerase III can be attributed to a more efficient and highly processive elongation capability of the DNA polymerase III X beta complex. They also prove that at least part of beta's normal contribution to the DNA polymerase III holoenzyme reaction takes place through interaction with DNA polymerase III core enzyme components to produce the essential complex necessary for efficient elongation in vivo.  相似文献   

8.
DNA polymerase III holoenzyme is responsible for chromosomal replication in bacteria. The components and functions of Escherichia coli DNA polymerase III holoenzyme have been studied extensively. Here, we report the reconstitution of replicase activity by essential components of DNA polymerase holoenzyme from the pathogen Pseudomonas aeruginosa. We have expressed and purified the processivity factor (beta), single-stranded DNA-binding protein, a complex containing the polymerase (alpha) and exonuclease (epsilon) subunits, and the essential components of the DnaX complex (tau(3)deltadelta'). Efficient primer elongation requires the presence of alphaepsilon, beta, and tau(3)deltadelta'. Pseudomonas aeruginosa alphaepsilon can substitute completely for E. coli polymerase III in E. coli holoenzyme reconstitution assays. Pseudomonas beta and tau(3)deltadelta' exhibit a 10-fold lower activity relative to their E. coli counterparts in E. coli holoenzyme reconstitution assays. Although the Pseudomonas counterpart to the E. coli psi subunit was not apparent in sequence similarity searches, addition of purified E. coli chi and psi (components of the DnaX complex) increases the apparent specific activity of the Pseudomonas tau(3)deltadelta' complex approximately 10-fold and enables the reconstituted enzyme to function better under physiological salt conditions.  相似文献   

9.
10.
The Escherichia coli dnaE gene, which encodes the alpha subunit of DNA polymerase III (pol III) holoenzyme, has been cloned in a plasmid containing the PL promoter of phage lambda and thermally induced to overproduce the alpha subunit. In cells carrying this plasmid (pKH167), the alpha subunit was amplified, after heat induction, to a level of about 0.2% of the total cellular protein. Polymerase activity was assayed in three ways: (i) gap-filling by pol III holoenzyme and subassemblies of it, (ii) the extensive replication of a primed, single-stranded DNA circle only by pol III holoenzyme, and (iii) complementation of a crude, inactive pol III holoenzyme (temperature-sensitive dnaE mutant fraction) in replication of a primed, single-stranded DNA circle. Amplification of the alpha subunit raised the polymerase level 10-fold in assay (i), indicative of the dependence of pol III gap-filling activity on this polypeptide; pol III holoenzyme activity remained unaffected (assay (ii)), but the complementation activity was raised 5-fold (assay (iii)). Thus, the elevated alpha subunit (free or in a subassembly form) can substitute in vitro for a defective alpha subunit in pol III holoenzyme, but cannot increase the in vivo level of about eight pol III holoenzyme molecules per cell. This low level of pol III holoenzyme is fixed in wild type cells (bearing no plasmid) despite the presence of a 5-fold excess of the alpha subunit, as inferred from the various assays. These results suggest that the low level of pol III holoenzyme is determined by a factor or factors other than the level of the alpha subunit.  相似文献   

11.
The activity of DNA polymerase-associated proofreading 3'-exonucleases is generally enhanced in less stable DNA regions leading to a reduction in base substitution error frequencies in AT- versus GC-rich sequences. Unexpectedly, however, the opposite result was found for Escherichia coli DNA polymerase II (pol II). Nucleotide misincorporation frequencies for pol II were found to be 3-5-fold higher in AT- compared with GC-rich DNA, both in the presence and absence of polymerase processivity subunits, beta dimer and gamma complex. In contrast, E. coli pol III holoenzyme, behaving "as expected," exhibited 3-5-fold lower misincorporation frequencies in AT-rich DNA. A reduction in fidelity in AT-rich regions occurred for pol II despite having an associated 3'-exonuclease proofreading activity that preferentially degrades AT-rich compared with GC-rich DNA primer-template in the absence of DNA synthesis. Concomitant with a reduction in fidelity, pol II polymerization efficiencies were 2-6-fold higher in AT-rich DNA, depending on sequence context. Pol II paradoxical fidelity behavior can be accounted for by the enzyme's preference for forward polymerization in AT-rich sequences. The more efficient polymerization suppresses proofreading thereby causing a significant increase in base substitution error rates in AT-rich regions.  相似文献   

12.
Studies with a rolling-circle DNA replication system reconstituted in vitro with a tailed form II DNA template, the DNA polymerase III holoenzyme (Pol III HE), the Escherichia coli single-stranded DNA binding protein, and the primosome, showed that within the context of a replication fork, the oligoribonucleotide primers that were formed were limited to a length in the range of 9 to 14 nucleotides, regardless of whether they were subsequently elongated by the lagging-strand DNA polymerase. This is in contrast to the 8-60-nucleotide-long primers synthesized by the primosome in the absence of DNA replication on a bacteriophage phi X174 DNA template, although when primer synthesis and DNA replication were catalyzed concurrently in this system, the extent of RNA polymerization decreased. As described in this report, we therefore examined the effect of the DNA Pol III HE on the length of primers synthesized by primase in vitro in the absence of DNA replication. When primer synthesis was catalyzed either: i) by the primosome on a phi X174 DNA template, ii) by primase on naked DNA with the aid of the DnaB protein (general priming), or iii) by primase alone at the bacteriophage G4 origin, the presence of the DNA Pol III HE in the reaction mixtures resulted in a universal reduction in the length of the heterogeneous RNA products to a uniform size of approximately 10 nucleotides. dNTPs were not required, and the addition of dGMP, an inhibitor of the 3'----5' exonuclease of the DNA Pol III HE, did not alter the effect; therefore, neither the 5'----3' DNA polymerase activity nor the 3'----5' exonuclease activity of the DNA Pol III HE was involved. E. coli DNA polymerase I, and the DNA polymerases of bacteriophages T4 and T7 could not substitute for the DNA Pol III HE. The Pol III core plays a crucial role in mediating this effect, although other subunits of the DNA Pol III HE are also required. These observations suggest that the association of primase with the DNA Pol III HE during primer synthesis regulates its catalytic activity and that this regulatory interaction occurs independently of, and prior to, formation of a preinitiation complex of the DNA Pol III HE on the primer terminus.  相似文献   

13.
An assay that measures synchronized, processive DNA replication by Escherichia coli DNA polymerase III holoenzyme was used to reveal replacement of pol III by the specialized lesion bypass DNA polymerase IV when the replicative polymerase is stalled. When idled replication is restarted, a rapid burst of pol III-catalyzed synthesis accompanied by approximately 7-kb full-length products is strongly inhibited by the presence of pol IV. The production of slower-forming, shorter length DNA reflects a rapid takeover of DNA synthesis by pol IV. Here we demonstrate that pol IV rapidly (<15 s) obstructs the stable interaction between pol III* and the beta clamp (the lifetime of the complex is >5 min), causing the removal of pol III* from template DNA. We propose that the rapid replacement of pol III* on the beta clamp with pol IV is mediated by two processes, an interaction between pol IV and the beta clamp and a separate interaction between pol IV and pol III*. This newly discovered property of pol IV facilitates a dynamic exchange between the two free polymerases at the primer terminus. Our study suggests a model in which the interaction between pol III* and the beta clamp is mediated by pol IV to ensure that DNA replication proceeds with minimal interruption.  相似文献   

14.
DNA polymerases (pols) catalyse the synthesis of DNA. This reaction requires a primer-template DNA in order to grow from the 3'OH end of the primer along the template. On the other hand terminal deoxyribonucleotidyl transferase (TdT) catalyses the addition of nucleotides at the 3'OH end of a DNA strand, without the need of a template. Pol lambda and pol micro are ubiquitous enzymes, possess both DNA polymerase and terminal deoxyribonucleotidyl transferase activities and belong to pol X family, together with pol beta and TdT. Here we show that pol lambda, pol micro and TdT, all possess the ability to synthesise in vitro short fragments of DNA in the absence of a primer-template or even a primer or a template in the reaction. The DNA synthesised de novo by pol lambda, pol micro and TdT appears to have an unusual structure. Furthermore we found that the amino acid Phe506 of pol lambda is essential for the de novo synthesis. This novel catalytic activity might be related to the proposed functions of these three pol X family members in DNA repair and DNA recombination.  相似文献   

15.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta (pol eta), which is involved in the replication of damaged DNA. Pol eta catalyzes efficient and accurate translesion synthesis past cis-syn cyclobutane di-thymine lesions. Here we show that human pol eta can catalyze translesion synthesis past an abasic (AP) site analog, N-2-acetylaminofluorene (AAF)-modified guanine, and a cisplatin-induced intrastrand cross-link between two guanines. Pol eta preferentially incorporated dAMP and dGMP opposite AP, and dCMP opposite AAF-G and cisplatin-GG, but other nucleotides were also incorporated opposite these lesions. However, after incorporating an incorrect nucleotide opposite a lesion, pol eta could not continue chain elongation. In contrast, after incorporating the correct nucleotide opposite a lesion, pol eta could continue chain elongation, whereas pol alpha could not. Thus, the fidelity of translesion synthesis by human pol eta relies not only on the ability of this enzyme to incorporate the correct nucleotide opposite a lesion, but also on its ability to elongate only DNA chains that have a correctly incorporated nucleotide opposite a lesion.  相似文献   

16.
Seki M  Wood RD 《DNA Repair》2008,7(1):119-127
DNA polymerase theta (pol theta) is a nuclear A-family DNA polymerase encoded by the POLQ gene in vertebrate cells. The biochemical properties of pol theta and of Polq-defective mice have suggested that pol theta participates in DNA damage tolerance. For example, pol theta was previously found to be proficient not only in incorporation of a nucleotide opposite a thymine glycol or an abasic site, but also extends a polynucleotide chain efficiently from the base opposite the lesion. We carried out experiments to determine whether this ability to extend from non-standard termini is a more general property of the enzyme. Pol theta extended relatively efficiently from matched termini as well as termini with A:G, A:T and A:C mismatches, with less descrimination than a well-studied A-family DNA polymerase, exonuclease-free pol I from E. coli. Although pol theta was unable to, by itself, bypass a cyclobutane pyrimidine dimer or a (6-4) photoproduct, it could perform some extension from primers with bases placed across from these lesions. When pol theta was combined with DNA polymerase iota, an enzyme that can insert a base opposite a UV-induced (6-4) photoproduct, complete bypass of a (6-4) photoproduct was possible. These data show that in addition to its ability to insert nucleotides opposite some DNA lesions, pol theta is proficient at extension of unpaired termini. These results show the potential of pol theta to act as an extender after incorporation of nucleotides by other DNA polymerases, and aid in understanding the role of pol theta in somatic mutagenesis and genome instability.  相似文献   

17.
DNA polymerase mu (pol mu), which is related to terminal deoxynucleotidyl transferase and DNA polymerase beta, is thought to be involved in non-homologous end joining and V(D)J recombination. Pol mu is induced by ionizing radiation and exhibits low fidelity. Analysis of translesion replication by purified human pol mu revealed that it bypasses a synthetic abasic site with high efficiency, using primarily a misalignment mechanism. It can also replicate across two tandem abasic sites, using the same mechanism. Pol mu extends primers whose 3'-terminal nucleotides are located opposite the abasic site. Most remarkably, this extension occurs via a mode of nucleotidyl transferase activity, which does not depend on the sequence of the template. This is not due to simple terminal nucleotidyl transferase activity, because pol mu is unable to add dNTPs to an oligo(dT)29 primer or to a blunt end duplex oligonucleotide under standard conditions. Thus, pol mu is a dual mode DNA-synthesizing enzyme, which can act as either a classical DNA polymerase or as a non-canonical, template-dependent, but sequence-independent nucleotidyl transferase. To our knowledge, this is the first report on a DNA-synthesizing enzyme with such properties. These activities may be required for its function in non-homologous end joining in the processing of DNA ends prior to ligation.  相似文献   

18.
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends.  相似文献   

19.
The dnaZ protein has been purified to near-homogeneity using an in vitro complementation assay that measures the restoration of activity in a crude enzyme fraction from the dnaZ mutant deficient in the replication of phi X174 DNA. Over 70-fold overproduction of the protein was obtained with a bacteriophage lambda lysogen carrying the dnaZ gene. The purified protein, under reducing and denaturing conditions, has a molecular weight of 52,000 and appears to be a dimer in its native form. The dnaZ protein is judged to be th 52,000-dalton gamma subunit of DNA polymerase III holoenzyme (McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484) for the following reasons: (i) highly purified DNA polymerase III holoenzyme contains a 52,000-dalton polypeptide and has dnaZ-complementing activity; (ii) the 52,000-dalton polypeptide is associated tightly with the DNA polymerase III holoenzyme and can be separated from the DNA polymerase III core only with severe measures; (iii) no other purified replication protein, among 14 tested, contains dnaZ protein activity; and (iv) the abundance of dnaZ protein, estimated at about 10 dimer molecules per Escherichia coli cell, is similar to that of the DNA polymerase III core. Among several circular templates tested in vitro (i.e. single stranded phi X174, G4 and M13 DNAs, and duplex phi X174 DNA), all rely on dnaZ protein for elongation by DNA polymerase III holoenzyme. The protein acts catalytically at a stoichiometry of one dimer per template.  相似文献   

20.
By using a defined gapped DNA substrate that mimics a lagging strand of 230 nucleotides and that contains a defined pause site, we have analyzed calf thymus DNA polymerases (pol) alpha, beta, delta, and epsilon in the presence of the three auxiliary proteins proliferating cell nuclear antigen (PCNA), replication factor C (RF-C) and replication protein A (RP-A) for their ability to complete an Okazaki fragment. Pol alpha alone could fill the gap to near completion, but was strongly stopped by the pause site. Addition of low amounts of RP-A resulted in an increased synthesis by pol alpha past the pause site. In contrast, high amounts of RP-A strongly inhibited gap filling by pol alpha. Further inhibition was evident when the two other auxiliary proteins, PCNA and RF-C, were added in addition to RP-A. Pol beta could completely fill the gap without specific pausing and also was strongly inhibited by RP-A. PCNA and RF-C had no detectable effect on pol beta. Pol delta, relied as expected, on all three auxiliary proteins for complete gap filling synthesis and could, upon longer incubation, perform a limited amount of strand displacement synthesis. Pol epsilon core enzyme was able to fill the gap completely, but like pol alpha, essentially stopped at the pause site. This pausing could only be overcome upon addition of PCNA, RF-C and E. coli single-stranded DNA binding protein. Thus pol epsilon holoenzyme preferentially synthesized to the end of the gap without pausing. Ligation of the DNA products indicated that pol beta core enzyme, pol delta and pol epsilon holoenzymes (but not pol alpha and pol epsilon core enzyme) synthesized products that were easily ligatable. Our results indicate that pol epsilon holoenzyme fills a defined lagging strand gapped template to exact completion and is able to pass a pause site. The data favour the hypothesis of Burgers (Burgers, P.M.J. (1991) J. Biol. Chem. 266, 22698-22706) that pol epsilon might be a candidate for the second replication enzyme at the lagging strand of the replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号