首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immuno-screening of an adult Aedes aegypti midgut cDNA expression library with anti-peritrophic matrix antibodies identified cDNAs encoding a novel peritrophic matrix protein, termed Ae. aegypti Adult Peritrophin 50 (Ae-Aper50), and the epithelial cell-surface membrane protein, AEG12. Both genes are expressed exclusively in the midguts of adult female mosquitoes and their expression is strongly induced by blood feeding. Ae-Aper50 has a predicted secretory signal peptide and five chitin-binding domains with intervening mucin-like domains. Localization of Ae-Aper50 to the peritrophic matrix was demonstrated by immuno-electron microscopy. Recombinant Ae-Aper50 expressed in baculovirus-infected insect cells binds chitin in vitro. Site-directed mutagenesis was used to study the role that cysteine residues from a single chitin-binding domain play in the binding to a chitin substrate. Most of the cysteine residues proved to be critical for binding. AEG12 has a putative secretory signal peptide at the amino-terminus and a putative glycosyl-phosphatidylinositol (GPI) anchor signal at its carboxyl-terminus and the protein was localized by immuno-electron microscopy to the midgut epithelial cell microvilli.  相似文献   

2.
Light microscopy of native preparations, histology, and electron microscopy have revealed that Phlebotomus duboscqi belongs to a class of sand fly species with prompt development of the peritrophic matrix (PM). Secretion of electron-lucent fibrils, presumably chitin, starts immediately after the ingestion of a blood meal and, about 6 h later, is followed by secretion of amorphous electron-dense components, presumably proteins and glycoproteins. The PM matures in less than 12 h and consists of a thin laminar outer layer and a thick amorphous inner layer. No differences have been found in the timing of the disintegration of the PM in females infected with Leishmania major. In both groups of females (infected and uninfected), the disintegration of the PM is initiated at the posterior end. Although parasites are present at high densities in the anterior part of the blood meal bolus, they escape from the PM at the posterior end only. These results suggest that L. major chitinase does not have an important role in parasite escape from the PM. Promastigotes remain in the intraperitrophic space until the PM is broken down by sand-fly-derived chitinases and only then migrate anteriorly. Disintegration of the PM occurs simultaneously with the morphological transformation of parasites from procyclic forms to long nectomonads. A novel role is ascribed to the anterior plug, a component of the PM secreted by the thoracic midgut; this plug functions as a temporary barrier to stop the forward migration of nectomonads to the thoracic midgut. This work was supported by the Ministry of Education of the Czech Republic (projects MSM0021620828 and LC06009).  相似文献   

3.
The midgut of most insects is lined with a peritrophic matrix, which is thought to facilitate digestion and protect the midgut digestive epithelial cells from abrasive damage and invasion by ingested micro-organisms. The type 2 peritrophic matrix is synthesised by a complex and highly specialised organ called the cardia typically located at the junction of the cuticle-lined foregut and midgut. Although the complex anatomy of this small organ has been described, virtually nothing is known of the molecular processes that lead to the assembly of the type 2 peritrophic matrix in the cardia. As a step towards understanding the synthesis of the peritrophic matrix, the synthesis and secretion of the intrinsic peritrophic matrix protein, peritrophin-15 has been followed in the cardia of Lucilia cuprina larvae using immuno-gold localisations. The protein is synthesised by cardia epithelial cells, which have abundant rough endoplasmic reticulum, Golgi, and vesicles indicative of a general secretory function. Peritrophin-15 is packaged into secretory vesicles probably produced from Golgi and transported to the cytoplasmic face of the apical plasma membrane. The vesicles fuse with the plasma membrane at the base of the microvilli and release peritrophin-15 into the inter-microvilli spaces. The protein then becomes associated with the nascent peritrophic matrix, which lies along the tips of the epithelial cell microvilli. It is proposed that peritrophin-15 binds to the ends of chitin fibrils present in the nascent peritrophic matrix, thereby protecting the fibril from the action of exochitinases.  相似文献   

4.
Summary We determined the time and site of secretion of the precursors of the peritrophic membrane (PM) in Aedes aegypti and when the structure is assembled. The fine structure of the developing membrane of blood-feed females was described, and the pattern of secretion of injected tritiated glucosamine analyzed autoradiographically. Immediately following blood feeding, ingested red cells rapidly become compressed, such that the surrounding plasma is extruded to the margin of the midgut contents. Thereby, ingested fluids form a narrow margin separating the blood mass from the midgut epithelium. By electron microscopy, the PM first becomes evident at about 4 to 8 h after blood is ingested, and the membrane attains mature texture by 12 h. The compacted mass of ingested erythrocytes seems to serve as a template for the forming structure. In contrast, tritiated glucosamine, injected into freshly engorged mosquitoes, begins to concentrate on the midgut microvilli by 2 h after feeding. By 8 h the label assumes the layered appearance that characterizes the fine structure of the mature membrane. In contrast to the prevailing concept that the PM of mosquitoes first assumes texture anteriorly immediately after blood is ingested, we find that this potential barrier to pathogen development forms no earlier than 4 h after feeding and that it is formed from precursors secreted along the entire length of the epithelium overlying the food mass.  相似文献   

5.
L. Taiz  M. Murry  D. G. Robinson 《Planta》1983,158(6):534-539
In homogenates of stem sections from etiolated pea (Pisum sativum L.) seedlings, secretory vesicles can be separated from Golgi-apparatus cisternae by rate-zonal centrifugation in renografin gradients. Optically, two bands of turbidity are observed, the uppermost containing the secretory vesicles and the lower one the Golgi-apparatus cisternae. The absence of glutaraldehyde in the homogenizing medium has allowed the effective characterization of marker-enzyme activities. Golgi-apparatus cisternae have been recognized by the presence of inosine-diphosphatase and glucan-synthase I activities as well as by electron microscopy. In contrast, although secretory vesicles also bear inosine diphosphatase they do not appear to possess glucan-synthase activity. Three plasma-membrane markers, NPA-binding, glucan synthase II, and KCl,Mg2+-adenosine triphosphatase (pH 6.5), were not detected in secretory vesicles. Pulse-chase experiments with [3H]glucose support our designation of secretory vesicles and Golgi-cisternal fractions.Abbreviations ER endoplasmic reticulum - GSI, GSII glucan, synthase I, II, respectively - IDPase inosine diphosphatase - PM plasma membrane - SV(s) secretory vesicle(s)  相似文献   

6.
Abstract The midgut of most insects is lined with a semipermeable acellular tube, the peritrophic matrix (PM), composed of chitin and proteins. Although various genes encoding PM proteins have been characterized, our understanding of their roles in PM structure and function is very limited. One promising approach for obtaining functional information is RNA interference, which has been used to reduce the levels of specific mRNAs using double‐stranded RNAs administered to larvae by either injection or feeding. Although this method is well documented in dipterans and coleopterans, reports of its success in lepidopterans are varied. In the current study, the silencing midgut genes encoding PM proteins (insect intestinal mucin 1, insect intestinal mucin 4, PM protein 1) and the chitin biosynthetic or modifying enzymes (chitin synthase‐B and chitin deacetylase 1) in a noctuid lepidopteran, Mamestra configurata, was examined in vitro and in vivo. In vitro studies in primary midgut epithelial cell preparations revealed an acute and rapid silencing (by 24 h) for the gene encoding chitin deacetylase 1 and a slower rate of silencing (by 72 h) for the gene encoding PM protein 1. Genes encoding insect intestinal mucins were slightly silenced by 72 h, whereas no silencing was detected for the gene encoding chitin synthase‐B. In vivo experiments focused on chitin deacetylase 1, as the gene was silenced to the greatest extent in vitro. Continuous feeding of neonates and fourth instar larvae with double‐stranded RNA resulted in silencing of chitin deacetylase 1 by 24 and 36 h, respectively. Feeding a single dose to neonates also resulted in silencing by 24 h. The current study demonstrates that genes encoding PM proteins can be silenced and outlines conditions for RNA interference by per os feeding in lepidopterans.  相似文献   

7.
SNARE domain proteins are key molecules mediating intracellular fusion events. SNAP25 family proteins are unique target-SNAREs possessing two SNARE domains. Here we report the genetic, molecular, and cell biological characterization of C. elegans SNAP-29. We found that snap-29 is an essential gene required throughout the life-cycle. Depletion of snap-29 by RNAi in adults results in sterility associated with endomitotic oocytes and pre-meiotic maturation of the oocytes. Many of the embryos that are produced are multinucleated, indicating a defect in embryonic cytokinesis. A profound defect in secretion by oocytes and early embryos in animals lacking SNAP-29 appears to be the underlying defect connecting these phenotypes. Further analysis revealed defects in basolateral and apical secretion by intestinal epithelial cells in animals lacking SNAP-29, indicating a broad requirement for this protein in the secretory pathway. A SNAP-29-GFP fusion protein was enriched on recycling endosomes, and loss of SNAP-29 disrupted recycling endosome morphology. Taken together these results suggest a requirement for SNAP-29 in the fusion of post-Golgi vesicles with the recycling endosome for cargo to reach the cell surface.  相似文献   

8.
The structure and secretory activity of the accessory salivary gland in two species of Conus were examined using routine and histochemical techniques of light, scanning and transmission electron microscopy. The composite layers of the accessory salivary gland of Conus are a luminal epithelium, fibromuscular layer, submuscular layer, and a capsule. In C. flavidus and C. vexillum, the luminal epithelium is formed by epitheliocytes and cytoplasmic processes extending from the secretory cells, whose perikarya form the submuscular layer. The processes carry secretory cell products (chiefly Golgi-derived glycoprotein) across the fibromuscular layer and terminate between epitheliocytes (at the bases of the secretory canaliculi) or beyond the surface of the epithelial cells. Conus vexillum is distinguished from C. flavidus by its high content of lipofuscin. Epitheliocytes are the only microvillated cells in the accessory salivary gland of Conus. In C. flavidus, epitheliocytes extrude secretory granules, various types of cytoplasmic blebs and clear vesicles by apocrine “pinching off”. Clear vesicles are shed from the tips of microvilli. The luminal epithelial cells of C. vexillum similarly egest clear vesicles, but normally undergo additional holocrine secretion to release lipofuscin. The secretions of epitheliocytes appear to be major products of the accessory salivary gland: consideration of secretory activities by both epitheliocytes and secretory cells will therefore be necessary when directly investigating accessory salivary gland function in Conus.  相似文献   

9.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

10.
The peritrophic membrane (PM) in tobacco budworm larvae (Heliothis virescens, Lepidoptera: Noctuidae), is a continuous sac which encloses the food bolus in the midgut and hindgut. The PM is a single-walled structure 3-5 mum thick which is comprised of two main layers or laminae. The laminae may be fused into a single structure or remain separated by a space which may contain additional thin strands of matrix. Staining with an anti-PM antibody and wheat germ agglutinin (WGA) illustrate the laminar nature of the PM and suggest that protein and chitin have co-incident spatial distributions within the matrix. By transmission electron microscopy, the PM is composed of a loose network of fibrils and small granules, the only structural difference among laminae being a compaction of the matrix along the edges of the two limiting laminae facing the endoperitrophic and ectoperitrophic spaces. By scanning electron microscopy, the PM surface has a wrinkled, felt-like texture without pores or slits. Contrary to the classical view that lepidopterans are Type I insects with respect to PM formation in which the PM forms along the full length of the midgut, the PM in the tobacco budworm forms primarily from secretions of specialized midgut epithelial cells at the junction of the foregut and midgut. The secretory cells, their secretions and the nascent PM stain intensely with the anti-PM antibody but not with WGA suggesting that chitin is added more posteriorly. The PM may be supplemented by the addition of minor amounts of matrix material along the length of the midgut. PM synthesis begins during embryogenesis prior to the initiation of feeding. The PM in neonates is only about 0.1 mum thick but otherwise is structurally similar to that in older larvae.  相似文献   

11.
Summary Parasarcophaga argyrostoma larvae continuously secrete a single, tube-like peritrophic membrane (PM), which has an electron-dense layer on the lumen side and a thicker chitin-containing electron-lucent part on the epithelium side. In the adult fleshfly, the secretion of PMs starts immediately after emergence. The initial part of the PMs is twisted and tight. The formation zone is folded with two separate secretory pads in which two tube-like PMs are formed continuously. The PMs are different, morphologically and with respect to their peripheral carbohydrate residues. The latter could be demonstrated with lectin gold conjugates. PM 1 consists of an electron-dense, chitin-free layer on the lumen side and a thicker part which contains chitin microfibrils in the matrix. PM 2 appears fluffy and has chitin microfibrils in its matrix, too. Chitin could be localized with WGA gold. Incubation of isolated PM 1 with lectin gold resulted in a peculiar pattern of bound lectins and gaps on the electron dense layer which otherwise appeared to be homogenous. Degradation of peritrophic membranes takes place in the hindgut. The cuticle of the anterior hindgut is studded with small teeth, which seem to be responsible for mechanical degradation of the peritrophic membranes into frayed pieces. This may be completed by the teeth on the rectal pads. From the appearance of the remnants of the peritrophic membranes it can be inferred that chemical degradation takes place in the hindgut.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

12.
光增白剂对甜菜夜蛾围食膜结构的作用与影响   总被引:14,自引:3,他引:11  
朱蓉  彭建新  洪华珠 《昆虫学报》2003,46(4):424-428
应用环境扫描电镜和生化技术研究了甜菜夜蛾Spodoptera exigua正常围食膜和光增白剂M2R处理围食膜的形态、结构和组成。结果表明:正常的围食膜表面光滑致密、无孔洞和缝隙;光增白剂处理的围食膜产生了孔缝。正常围食膜所含蛋白质的种类很多,经SDS-PAGE测定至少有17条多肽,分子量多在97.4kD以下,围食膜蛋白质的含量约为41.98%,糖的含量约为2.05%。光增白剂可以解离大部分围食膜蛋白,液滴法喂食幼虫蓝色葡聚糖2000 进一步证实了光增白剂能破坏围食膜的完整性。  相似文献   

13.
Summary The anthelmintic compound mebendazole caused the disappearance of microtubules in the intestinal cells ofAscaridia galli. Electron microscopy revealed that soon after the microtubules disappeared there was an accumulation of secretory vesicles near the golgi areas. subsequently many of these vesicles aggregated forming dense large vesicles near the terminal web of the intestinal cells. This provides further evidence for the involvement of microtubules in the secretion of products from eukaryotic cells. It seems likely that inhibition of microtubule directed secretory functions in various cell types is an important function in the anthelmintic activity of the benzimidazole carbamates.  相似文献   

14.
Yang Y  Zhang F  Zhao M  An L  Zhang L  Chen N 《Plant cell reports》2007,26(2):229-235
The plasma membrane (PM) vesicles from Populus euphratica (P. euphratica) callus were isolated to investigate the properties of the PM H+-ATPase. An enrichment of sealed and oriented right-side-out PM vesicles was demonstrated by measurement of the purity and orientation of membrane vesicles in the upper phase fraction. Analysis of pH optimum, temperature effects and kinetic properties showed that the properties of the PM H+-ATPase from woody plant P. euphratica callus were consistent with those from herbaceous species. Application of various thiol reagents to the reaction revealed that reduced thiol groups were essential to maintain the PM H+-ATPase activity. In addition, there was increased H+-ATPase activity in the PM vesicles when callus was exposed to NaCl. Western blotting analysis demonstrated an enhancement of H+-ATPase content in NaCl-treated P. euphratica callus compared with the control.  相似文献   

15.
Tarantula venoms are a cocktail of proteins and peptides that have been increasingly studied in recent years. In contrast, less attention has been given to analyzing the structure of the paired cephalic glands that produce the venom. We have used light, electron, and confocal microscopy to study the organization and structure of the venom gland of the Brazilian tarantula Vitalius dubius. The chelicerae are hairy chitinous structures, each with a single curved hollow fang that opens via an orifice on the anterior surface. Internally, each chelicera contains striated muscle fiber bundles that control fang extension and retraction, and a cylindrical conical venom gland surrounded by a thick well-developed layer of obliquely arranged muscle fibers. Light microscopy of longitudinal and transverse sections showed that the gland secretory epithelium consists of a sponge-like network of slender epithelial cell processes with numerous bridges and interconnections that form lacunae containing secretion. This secretory epithelium is supported by a basement membrane containing elastic fibers. The entire epithelial structure of the venom-secreting cells is reinforced by a dense network of F-actin intermediate filaments, as shown by staining with phalloidin. Neural elements (axons and acetylcholinesterase activity) are also associated with the venom gland. Transmission electron microscopy of the epithelium revealed an ultrastructure typical of secretory cells, including abundant rough and smooth endoplasmic reticulum, an extensive Golgi apparatus, and numerous mitochondria.  相似文献   

16.
Nakashima J  Endo S  Fukuda H 《Planta》2004,218(5):729-739
Polygalacturonase (PG) is a cell wall-associated protein that degrades pectin. A ZePG1 cDNA encoding a putative PG was isolated from Zinnia elegens L. and a rabbit antibody specific to the ZePG1 protein was generated. The level of the ZePG1 protein was up-regulated when tracheary element differentiation was initiated. Using gold-labeled secondary antibodies for light and electron microscopy, ZePG1 protein was localized in cultured Zinnia cells. This protein was preferentially distributed on tracheary elements (TEs). At the subcellular level, the protein was localized on secondary wall thickenings, primary walls, Golgi bodies and vesicles. Thus, the putative role of the ZePG1 protein might be the degradation of pectic substances before lignification. Some non-TE cells also accumulated ZePG1 protein on primary walls, Golgi bodies and vesicles. The accumulation of ZePG1 protein on primary walls seems to be at the elongating tips of non-TE cells. In plants, ZePG1 protein was localized on the secondary wall thickenings of differentiating TEs and phloem regions. These results suggest that the expression of the ZePG1 protein is highly regulated both spatially and temporally during in vitro and in situ TE differentiation.Abbreviations GST Glutathione-S-transferase - PATAg Periodic acid–thiocarbohydrazide–silver proteinate - PG Polygalacturonase - TE Tracheary element  相似文献   

17.
Molecular bases of epithelial cell invasion by Shigella flexneri   总被引:4,自引:0,他引:4  
The pathogenesis of shigellosis is characterized by the capacity of the causative microorganism, Shigella, to invade the epithelial cells that compose the mucosal surface of the colon in humans. The invasive process encompasses several steps which can be summarized as follows: entry of bacteria into epithelial cells involves signalling pathways that elicit a macropinocitic event. Upon contact with the cell surface, S. flexneri activates a Mxi/Spa secretory apparatus encoded by two operons comprising about 25 genes located on a large virulence plasmid of 220 kb. Through this specialized secretory apparatus, Ipa invasins are secreted, two of which (IpaB, 62 kDa and IpaC, 42 kDa) form a complex which is itself able to activate entry via its interaction with the host cell membrane. Interaction of this molecular complex with the cell surface elicits major rearrangements of the host cell cytoskeleton, essentially the polymerization of actin filaments that form bundles supporting the membrane projections which achieve bacterial entry. Active recruitment of the protooncogene pp 60c-src has been demonstrated at the entry site with consequent phosphorylation of cortactin. Also, the small GTPase Rho is controlling the cascade of signals that allows elongation of actin filaments from initial nucleation foci underneath the cell membrane. The regulatory signals involved as well as the proteins recruited indicate that Shigella induces the formation of an adherence plaque at the cell surface in order to achieve entry. Once intracellular, the bacterium lyses its phagocytic vacuole, escapes into the cytoplasm and starts moving the inducing polar, directed polymerization of actin on its surface, due to the expression of IcsA, a 120 kDa outer membrane protein, which is localized at one pole of the microorganism, following cleavage by SopA, a plasmid-encoded surface protease. In the context of polarized epithelial cells, bacteria then reach the intermediate junction and engage their components, particularly the cadherins, to form a protrusion which is actively internalized by the adjacent cell. Bacteria then lyse the two membranes, reach the cytoplasmic compartment again, and resume actin-driven movement.  相似文献   

18.
A method for isolation of secretory vesicles from the yeast Saccharomyces cerevisiae based on the disintegration of protoplasts by osmotic shock followed by separation of the vesicles by centrifugation in a density gradient of Urografin was developed in this study. Two populations of the secretory vesicles that differ in density and shape were separated. Acid phosphatases (EC 3.1.3.2) were used as markers of the secretory vesicles. It was shown that the constitutive acid phosphatase (PHO3 gene product) is mainly transported to the cell surface by a lower density population of vesicles, while the repressible acid phosphatase (a heteromer encoded by PHO5, PHO10, and PHO11 genes) by a vesicle population of higher density. These data provide evidence that at least two pathways of transport of yeast secretory proteins from the place of their synthesis and maturation to the cell surface may exist. To reveal the probable reasons for transport of Pho3p and Pho5p/Pho10p/Pho11p enzymes by two different kinds of vesicles, we isolated vesicles from strains that synthesize the homomeric forms of the repressible acid phosphatase. It was demonstrated that glycoproteins encoded by the PHO10 and/or PHO11 genes could be responsible for the choice of one of the alternative transport pathways of the repressible acid phosphatase. A high correlation coefficient between bud formation and secretion of Pho5p phosphatase and the absence of correlation between bud formation and secretion of minor phosphatases Pho10p and Pho11p suggests different functional roles of the polypeptides that constitute the native repressible acid phosphatase.  相似文献   

19.
The ovipositor of striped bitterling Acheilognathus yamatsutae was subjected to ultrastructure and histochemical analysis during spawning season using light and electron microscopy. Although the ovipositor of A. yamatsutae is a long cylindrical tube with smooth external surface, it was possible to confirm the presence of well-developed fingerprint structure using scanning electron microscopy. Internal aspect analysis of ovipositor revealed formation of 5–8 longitudinal folds. Cross section analysis revealed that the ovipositor is composed of an outer epithelial layer, a mid connective tissue layer, and an inner epithelial layer. The outer epithelial layer contains 7–9 cell layers composed mainly of epithelial and mucous cells. Result of AB–PAS (pH 2.5) and AF–AB reaction showed that mucous cells contained mainly acidic carboxylated mucosubstances. The connective tissue layer was loose and made mainly of collagen fibers and some muscle fibers, along with blood vessels and a small number of chromatophores. The inner epithelial layer, which is a single layer, is composed of columnar epithelia. Observation under transmission electron microscope enabled distinction of the outer epithelial layer into superficial, intermediate and basal layers. Although the types of cells in the superficial tissue layer were diverse, they all shared the development of glycocalyx covered microridges. The majority of epithelial cells in the intermediate layer were cuboidal shaped, while those in the basal layer were columnar. Two types (A and B) of secretory cells were observed in the outer epithelial layer. The connective tissue layer had two types of chromatophores including xantophore and melanophore, in addition to a well-developed nerve fiber bundles. Columnar epithelial cells, mitochondria-rich cells and rodlet cells were observed in the inner epithelial layer. Microvilli were well developed on the free surface of columnar epithelial cells.  相似文献   

20.
Selected strains of Candida albicans were examined to reveal the surface antigenicity and biochemical nature of major cell wall proteins that also were shown to serve as cellular adhesins on human buccal epithelial cells. Confirmation of the adhesive properties of these cells was made by scanning electron microscopy and immunofluorescence microscopy. Particular attention was directed at the clinical isolate KM-302. By means of indirect immunofluorescence staining, the KM-302 blastoconidia absorbed rabbit anti-C. albicans ATCC-32354 serum, revealing specific localization of surface antigens on germ tubes and pseudohyphae. Extracellular polymeric material and the cell wall extract of C. albicans KM-302 blastoconidia were found to contain a major surface antigen of 49 kDa that exhibited 42% adhesion inhibition in vitro. Of considerable significance is that immunogold localization by electron microscopy showed the antigen to be almost exclusively cell wall bound. This major antigen, identified in affinity and gel filtration chromatography fractions, was composed of 4% carbohydrate and 95.7% protein and had an isoelectric point of 6.1. The major antigen also showed a high level of similarity with that of C. albicans strain SC-5314 inasmuch as the major antigen of that strain had carbohydrate and protein compositions of 4 and 95.5%, respectively. Both of these strains also possessed the same percent of adhesion inhibition of human buccal epithelial cells.Abbreviations BECs buccal epithelial cells - CWE cell wall extract - EPP extracellular polymers and proteins - FITC fluorescein isothiocyanate - mAg major antigen - OD 600 optical density at 600 nm - PBS phosphate buffered saline - TEM transmission electron microscopy - YNB yeast nitrogen base  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号