首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
Entamoeba histolytica: purification of cathepsin B   总被引:4,自引:0,他引:4  
A cytotoxic cysteine proteinase with a molecular weight of 16,000 was isolated from axenically grown trophozoites of Entamoeba histolytica. The enzyme was purified from frozen-thawed strain HM-1 by ion-exchange chromatography on DEAE-cellulose, organomercurial agarose affinity chromatography, and size-exclusion chromatography. The purified enzyme had proteinase activity that could be demonstrated on azocasein (pH 5), hemoglobin (pH 5), or carbobenzoxy-L-arginyl--L-arginyl-7-amino-4-trifluoromethylcoumarin++ + (Z-arg-arg-AFC), a substrate specific for cathepsin B. Enzyme activity was stable to high pH, but not to 40 C for 1 hr or 56 C for 0.5 hr. As typical of cysteine proteinases, inhibition of activity on Z-arg-arg-AFC by p-chloromercuribenzoate or mercury was reversed by free sulfhydryl groups. Both the proteinase and cytotoxic activities of the purified amoebal cathepsin B were inhibited by leupeptin and serum and activated by free sulfhydryl groups, supporting the hypothesis that both activities are characteristics of amoebal cathepsin B. Virulent strains of E. histolytica (HM-1 and Rahman) had significantly more cathepsin B activity per milligram protein than less virulent strains (HK-9, Laredo, and Huff). The correlation between higher levels of cathepsin B activity in strains with greater virulence could indicate a role for amoebal cathepsin B in the pathogenesis of amoebiasis.  相似文献   

2.
Elastinolytic activity of human cathepsin L.   总被引:8,自引:1,他引:7       下载免费PDF全文
The hydrolysis of a tritiated elastin substrate by the human cysteine proteinases cathepsins B and L has been studied. Cathepsin L was found to be at least 100-fold more active on this substrate than cathepsin B. The specific activity of cathepsin L at pH 5.5 for hydrolysis of elastin was about the same as that of pig pancreatic elastase at its optimum pH of 8.8.  相似文献   

3.
Various types of proteinases are implicated in the malignant progression of human and animal tumors. Proteinase inhibitors may therefore be useful as therapeutic agents in anti-invasive and anti-metastatic treatment. The aims of this study were (1) to estimate the relative importance of proteinases in B16 cell invasion in vitro using synthetic, class-specific proteinase inhibitors and (2) to assess the inhibitory effect of some naturally occurring cysteine proteinase inhibitors. Serine proteinase inhibitor reduced invasiveness by up to 24%, whereas inhibition of aspartic proteinases reduced invasion by 11%. Synthetic inhibitors of cysteine proteinases markedly impaired invasion: cathepsin B inhibitors, particularly Ca-074Me, inhibited invasion from 20-40%, whereas cathepsin L inhibitor Clik 148 reduced invasion by 11%. The potato cysteine proteinase inhibitor PCPI 8.7 inhibited invasion by 21%, whereas another potato inhibitor, PCPI 6.6, and the mushroom cysteine proteinase inhibitor clitocypin had no effects. As the inhibitors that inhibited cathepsin B were in general more efficient at impairing the invasiveness, we conclude that of the two cysteine proteinases, cathepsin B plays a more important role than cathepsin L in murine melanoma cell invasion.  相似文献   

4.
We have investigated the degradation of 125I-labeled bovine serum albumin by lysates of rat kidney cortical lysosomes. Maximal degradation of albumin occurred at pH 3.5-4.2, with approximately 70% of the maximal rate occurring at pH 5.0. Degradation was proportional to lysosomal protein concentration (range 100-600 micrograms) and time of incubation (1-5 h). Dithioerythritol (2 mM) stimulated albumin degradation 5- to 10-fold. Albumin degradation was not inhibited by phenylmethanesulfonyl fluoride (1 mM) or EDTA (5 mM), indicating that neither serine nor metalloproteinases are involved to a significant extent. Pepstatin (5 micrograms/ml), an inhibitor of aspartic proteinases, inhibited albumin degradation by approximately 50%. Leupeptin (10 microM) and N-ethylmaleimide (10 mM), inhibitors of cysteine proteinases, decreased albumin degradation by 34 and 65%, respectively. Combinations of aspartic and cysteine proteinase inhibitors produced nearly complete inhibition of albumin degradation. Taken together, these data indicate that aspartic and cysteine proteinases are primarily responsible for albumin degradation by renal cortical lysosomes under these conditions. In keeping with the above data, we have measured high activities of the cysteine proteinases, cathepsins B, H, and L, in cortical tubules, the major site of renal protein degradation. Using the peptidyl 7-amino-4-methylcoumarin (NHMec) substrates (Z-Arg-Arg-NHMec, for cathepsin B; Arg-NHMec for cathepsin H; and Z-Phe-Phe-CHN2-inhibitable hydrolysis of Z-Phe-Arg-NHMec corrected for inhibition of cathepsin B activity for cathepsin L) values obtained were (means +/- SE, mU/mg protein, 1 mU = production of 1 nM product/min, n = 6): cathepsin B, 2.1 +/- 0.34; cathepsin H, 1.35 +/- 0.19; cathepsin L, 14.49 +/- 1.26. In comparison, the activities of cathepsins B, H, and L in liver were: 0.56 +/- 0.03, 0.28 +/- 0.04, and 1.27 +/- 0.16, respectively.  相似文献   

5.
Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 μM); CAL2 (17 kDa, pHo 5.5, km 11 μM Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM l-Leucine-p-nitroanilide), α-glucosidase (90 kDa, pHo 5.0, km 5mM with p-nitrophenyl α-d-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans.  相似文献   

6.
Proteolytic activities in alfalfa weevil (Hypera postica) larval midguts have been characterized. Effects of pH, thiol activators, low-molecular weight inhibitors, and proteinase inhibitors (PIs) on general substrate hydrolysis by midgut extracts were determined. Hemoglobinolytic activity was highest in the acidic to mildly acidic pH range, but was maximal at pH 3.5. Addition of thiol-activators dithiothreitol (DTT), 2-mercaptoethanol (2-ME), or L-cysteine had little effect on hemoglobin hydrolysis at pH 3.5, but enhanced azocaseinolytic activity two to three-fold at pH 5.0. The broad cysteine PI E-64 reduced azocaseinolytic activity by 64% or 42% at pH 5 in the presence or absence of 5 mM L-cysteine, respectively. Inhibition by diazomethyl ketones, Z-Phe-Phe-CHN(2) and Z-Phe-Ala-CHN(2), suggest that cathepsins L and B are present and comprise approximately 70% and 30% of the cysteine proteolytic activity, respectively. An aspartyl proteinase component was identified using pepstatin A, which inhibited 32% (pH 3.5, hemoglobin) and 50% (pH 5, azocasein) of total proteolytic activity. This activity was completely inhibited by an aspartyl proteinase inhibitor from potato (API), and is consistent with the action of a cathepsin D-like enzyme. Hence, genes encoding PIs with specificity toward cathepsins L, B and D could potentially be effective for control of alfalfa weevil using transgenic plants.  相似文献   

7.
Cathepsin D inactivates cysteine proteinase inhibitors, cystatins   总被引:2,自引:0,他引:2  
The formation of inactive complexes in excess molar amounts of human cathepsins H and L with their protein inhibitors human stefin A, human stefin B and chicken cystatin at pH 5.6 has been shown by measurement of enzyme activity coupled with reverse-phase HPLC not to involve covalent cleavage of the inhibitors. Inhibition must be the direct result of binding. On the contrary the interaction of cystatins with aspartic proteinase cathepsin D at pH 3.5 for 60 min followed by HPLC resulted in their inactivation accompanied by peptide bond cleavage at several sites, preferentially those involving hydrophobic amino acid residues. The released peptides do not inhibit papain and cathepsin L. These results explain reported elevated levels of cysteine proteinases and lead to the proposal that cathepsin D exerts an important function, through inactivation of cystatins, in the increased activities of cysteine proteinases in human diseases including muscular distrophy.  相似文献   

8.
Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents.  相似文献   

9.
In this study, we present a propeptide-like cysteine proteinase inhibitor, Drosophila CTLA-2-like protein (D/CTLA-2), a CG10460 (crammer) gene product, with an amino acid sequence significantly similar to the proregion of Drosophila cysteine proteinase 1 (CP1). Recombinant D/CTLA-2, expressed in E. coli, strongly inhibited Bombyx cysteine proteinase (BCP) with a Ki value of 4.7 nM. It also inhibited cathepsins L and H with Ki values of 3.9 (human liver) and 0.43 (rabbit liver) nM, and 7.8 nM (human liver), respectively. Recombinant D/CTLA-2 exhibited low but significant inhibitory activities to cathepsin B with Ki values of 15 nM (human liver) and 110 nM (rat liver), but hardly inhibited papain. We attempted to purify cysteine proteinases inhibited by D/CTLA-2 from total bodies of adult Drosophila. Recombinant D/CTLA-2 significantly inhibited CP1 with a Ki value of 12 nM, indicating that CP1, a cognate enzyme of D/CTLA-2, is a target enzyme of the inhibitor in Drosophila cells. These results indicate that D/CTLA-2 is a selective inhibitor of cathepsin L-like cysteine proteinases similar to other propeptide-like cysteine proteinase inhibitors such as Bombyx cysteine proteinase inhibitors (BCPI) and cytotoxic T-lymphocyte antigen-2 (CTLA-2). D/CTLA-2 was expressed over the whole life cycle of Drosophila. Strong expression was observed in the garland cells and prothoracic gland in the late stages of embryonic development. These results suggest that D/CTLA-2, implicated in intra- and extra-cellular digestive processes, functions in these tissues by suppressing uncontrolled enzymatic activities of CP1.  相似文献   

10.
By focusing on the amphiphilic properties of cyclopropenone (e.g. a good electrophile and a precursor for a stable 2pi-aromatic hydroxycyclopropenium cation), a new class of cysteine proteinase inhibitors containing a cyclopropenone moiety was designed. For the purpose of the present research, we needed to devise a new method to introduce a peptide-related moiety as a substituent on the cyclopropenone residue. We investigated the reaction of metalated cyclopropenone acetal derivatives (2, R2 = metal) with N-protected alpha-aminoaldehydes 4 to obtain the adduct 5, and succeeded in the preparation of highly potentiated cysteine proteinase inhibitors 8 after several steps transformations. They showed strong inhibitory activities only to cysteine proteinases such as calpain, papain, cathepsin B, and cathepsin L and not to serine (e.g. thrombin and cathepsin G) and aspartic proteinases (e.g. cathepsin D). Kinetic studies indicated that they are competitive inhibitors, and by the examinations of their inhibitory mechanism it became clear that they are reversible inhibitors.  相似文献   

11.
Peptidylmethylsulphonium salts incorporating consecutive basic residues at the C-terminus of the peptidyl portion such as -Arg-Arg-, -Arg-Lys-, -Lys-Lys- and -Lys-Arg- were synthesized and examined as proteinase inhibitors. Serine proteinases with a specificity directed towards hydrolysis at cationic residues were found to be unaffected by these derivatives. On the other hand, cysteine proteinases, cathepsin B and, in particular, clostripain were readily inactivated by affinity labelling. The reagents thus are of promise for the study of prohormone processing promoted by cysteine proteinases.  相似文献   

12.
Proteolytically active complexes of the proteinase cathepsin L, with an endogenous inhibitor of cysteine proteinases, were purified from sheep liver. The complexes were active against the synthetic substrate Z-Phe-Arg-NHMec and also the proteins azocasein and gelatin. The composition of the complexes was demonstrated by Western blotting, after reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with monospecific antibodies raised against purified sheep liver cathepsin L and purified sheep liver cysteine proteinase inhibitor (probably stefin B). Similar complexes could be formed in vitro, by coincubation of purified sheep liver cathepsin L with the purified sheep liver cystatin at a pH of 5.5 or higher.  相似文献   

13.
Proteinase activity in the cellular slime mould Dictyostelium discoideum has been analyzed by electrophoresis on polyacrylamide gels containing denatured hemoglobin. At least eight bands due to acid proteinases have been defined using extracts of myxamoebae, four bands A-D which move faster than the fifth and major band E, a minor band E' which moves just behind E and two slow bands G and H. Fruiting body formation was accompanied by the appearance of one new proteinase band F. The proteinases were present in extracts of both axenically-grown and bacterially-grown cells. Differences between the pH dependence and stability of the individual proteinases were detected. Inhibitor studies suggested that the faster proteinases A-D may be cathepsin B-like, whilst the slower enzymes E, E' and F do not fit readily into any known group of proteinases since they were sensitive to HgCl2 but not to other inhibitors of cathepsin B and not to inhibitors of cathepsin D-like proteinases under standard conditions. None of the proteinases was apparently formed during or after preparation of extracts and the proteinases could be re-run on polyacrylamide gels to give only the band expected from the first run. The bands are believed to reflect multiple proteinase activities within the cell.  相似文献   

14.
Proteinase activities in the larval midguts of the bruchids Callosobruchus maculatus and Zabrotes subfasciatus were investigated. Both midgut homogenates showed a slightly acidic to neutral pH optima for the hydrolysis of fluorogenic substrates. Proteolysis of epsilon-aminocaproil-Leu-Cys(SBzl)-MCA was totally inhibited by the cysteine proteinase inhibitors E-64 and leupeptin, and was activated by 1.5 mM DTT in both insects, while hydrolysis of the substrate Z-ArgArg-MCA was inhibited by aprotinin and E-64, which suggests that it is being hydrolysed by serine and cysteine proteinases. Gel assays showed that the proteolytic activity in larval midgut of C. maculatus was due to five major cysteine proteinases. However, based on the pattern of E-64 and aprotinin inhibition, proteolytic activity in larval midgut of Z. subfasciatus was not due only to cysteine proteinases. Fractionation of the larval midgut homogenates of both bruchids through ion-exchange chromatography (DEAE-Sepharose) revealed two peaks of activity against Z-ArgArg-MCA for both bruchid species. The fractions from C. maculatus have characteristics of cysteine proteinases, while Z. subfasciatus has one non-retained peak of activity containing cysteine proteinases and another eluted in a gradient of 250-350 mM NaCl. The proteolytic activity of the retained peak is higher at pH 8.8 than at pH 6.0 and corresponds with a single peak that is active against N-p-tosyl-GlyGlyArg-MCA, and sensitive to 250 microM aprotinin (90% inhibition). The peak contains a serine proteinase which hydrolyzes alpha-amylase inhibitor 1 from the common bean (Phaseolus vulgaris). Arch.  相似文献   

15.
The physiology of the gut lumen of the red flour beetle, T. castaneum, was studied to determine the conditions for optimal protein hydrolysis. Although the pH of gut lumen extracts from T. castaneum was 6.5, maximum hydrolysis of casein by gut proteinases occurred at pH 4.2. The synthetic substrate N-alpha-benzoyl-DL-arginine-rho-nitroanilide was hydrolyzed by T. castaneum gut proteinases in both acidic and alkaline buffers, whereas hydrolysis of N-succinyl-ala-ala-pro-phe rho-nitroanilide occurred in alkaline buffer. Inhibitors of T. castaneum digestive proteinases were examined to identify potential biopesticides for incorporation in transgenic seed. Cysteine proteinase inhibitors from potato, Job's tears, and sea anemone (equistatin) were effective inhibitors of in vitro casein hydrolysis by T. castaneum proteinases. Other inhibitors of T. castaneum proteinases included leupeptin, L-trans-epoxysuccinylleucylamido [4-guanidino] butane (E-64), tosyl-L-lysine chloromethyl ketone, and antipain. Casein hydrolysis was inhibited weakly by chymostatin, N-tosyl-L-phenylalanine chloromethyl ketone, and soybean trypsin inhibitor (Kunitz). The soybean trypsin inhibitor had no significant effect on growth when it was bioassayed alone, but it was effective when used in combination with potato cysteine proteinase inhibitor. In other bioassays with single inhibitors, larval growth was suppressed by the cysteine proteinase inhibitors from potato, Job's tears, or sea anemone. Levels of inhibition were similar to that observed with E-64, although the moles of proteinaceous inhibitor tested were approximately 1000-fold less. These proteinaceous inhibitors are promising candidates for transgenic seed technology to reduce seed damage by T. castaneum.  相似文献   

16.
The partial purification of two intracellular proteinases from the protozoan parasite Entamoeba histolytica is reported. One of these enzymes is an acid proteinase exhibiting maximum activity at pH 3.5 (hemoglobin substrate), is little affected by a range of inhibitors or activators, and is presumed to be similar to cathepsin D. Also present is a neutral proteinase exhibiting optimum activity at pH 6.0 (azocasein) but only poorly hydrolyzing either hemoglobin or serum albumen. This latter enzyme displayed no metal ion requirement, but was markedly inhibited by thiol-blocking agents and activated by free sulhydryl-containing compounds.  相似文献   

17.
采用阴离子交换层析法,从棉铃虫Helicoverpa armigera卵母细胞中分离纯化到一种半胱氨酸蛋白酶,SDS-PAGE电泳显示为一条带,分子量约为29 kD,原位水解电泳表明其具有蛋白水解活性。对其进行了部分氨基酸序列测定,初步确定这种蛋白酶属于半胱氨酸蛋白酶类中的组织蛋白酶B类。  相似文献   

18.
Cysteine proteinase inhibitors isolated from rat and human epidermis were purified to homogeneity and had isoelectric points of pH 4.31 and pH 5.10, respectively, Both inhibitors caused noncompetitive inhibition to the same degree against papain (EC 3.4.22.2), but the activity of human inhibitor against rat liver cathepsins B (EC 3.4.22.1), H (EC 3.4.22.16), and L (EC 3.422.-) was more effective than that of rat inhibitor. Dependency on pH was observed with rat inhibitor for cathepsins B and H, and with human inhibitor for cathepsin L. The reaction of the inhibitors with papain and cathepsins H and L occurred immediately, while the inhibition reaction of cathepsin B increased progressively during a preincubation time up to 40 min. Incubation at pH 7.0 maximized the progressive inhibitory activity. These findings demonstrate that cysteine proteinase inhibitors from rat and human epidermis inhibited a variety of cysteine proteinases. However, the inhibitor and enzyme interaction depends upon the enzyme, inhibitor source, and experimental conditions such as pH and preincubation time.  相似文献   

19.
Cathepsin L--a latent proteinase in guinea pig sperm   总被引:1,自引:0,他引:1  
Guinea pig spermatozoa were found to contain a fully-latent cysteine proteinase that could be unmasked by incubating epididymal sperm for 2 hr at pH 3.5 and 37 degrees C. The proteinase was identified as cathepsin L (EC 3.4.22.15) on the basis of its optimal hydrolysis of benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide (Z-Phe-Arg-NMec) at pH 5.5; lack of action on Z-Arg-Arg-NMec and Arg-NMec; urea-enhanced digestion of azocasein; marked sensitivity to thiol reagents, leupeptin, Z-Phe-Phe-CHN2, and L-trans-epoxy-succinylleucylamido(3-methyl)butane (Ep-475 or E-64-c); and insensitivity to pepstatin and serine proteinase inhibitors. Gossypol, a male antifertility agent, was inhibitory. The unmasking phenomenon was reversibly inhibited by HgCl2 and mersalyl acid, and prevented by leupeptin and Ep-475, but not by pepstatin.  相似文献   

20.
Plasma membrane-associated cysteine proteinases in human and animal tumors   总被引:5,自引:0,他引:5  
The ability of tumor cells to invade into and through normal tissue during the metastatic cascade has been attributed to tumor-associated degradative enzymes including proteinases of the metallo, serine and cysteine classes. Work from several laboratories has established that the cysteine proteinases cathepsins L and B are released from tumor cells, primarily as latent precursor forms. In addition, a cathepsin B-like cysteine proteinase has been shown to be associated with the plasma membrane fraction of several animal and human tumors. This form of the enzyme retains activity under physiologic (or pathologic) conditions including at neutral pH and in the presence of low Mr inhibitors. Since we have established that cathepsin B can degrade the basement membrane attachment glycoprotein laminin, we speculate that plasma membrane-associated cathepsin B may participate in focal dissolution of the basement membrane during tumor cell extravasation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号