首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time‐dependent variations in the hormonal and metabolic responses to food are of importance to human health, as postprandial metabolic responses have been implicated as risk factors in a number of major diseases, including cardiovascular disease. Early work reported decreasing glucose tolerance in the evening and at night with evidence for insulin resistance at night. Subsequently an endogenous circadian component, assessed in constant routine (CR), as well as an influence of sleep time, was described for glucose and insulin. Plasma triacylglycerol (TAG), the major lipid component of dietary fat circulating after a meal, also appears to be influenced by both the circadian clock and sleep time with higher levels during biological night (defined as the time between the onset and offset of melatonin secretion) despite identical hourly nutrient intake. These time‐dependent differences in postprandial responses have implications for shiftworkers. In the case of an unadapted night shift worker, meals during work time will be taken during biological night. In simulated night shift conditions the TAG response to a standard meal, preceded by either a low‐fat or a high‐fat premeal, was higher after a nighttime meal than during a daytime meal, and the day/night difference was larger in men than in women. In real night shift workers in Antarctica, insulin, glucose, and TAG all showed an increased response after a nighttime meal (second day of night shift) compared to a daytime meal. Night shift workers are reported to have an approximately 1.5 times higher incidence of heart disease risk and also demonstrate higher TAG levels compared with matched dayworkers. As both insulin resistance and elevated circulating TAG are independent risk factors for heart disease, it is possible that meals at night may contribute to this risk.  相似文献   

2.
Circadian aspects of postprandial metabolism   总被引:5,自引:0,他引:5  
Time-dependent variations in the hormonal and metabolic responses to food are of importance to human health, as postprandial metabolic responses have been implicated as risk factors in a number of major diseases, including cardiovascular disease. Early work reported decreasing glucose tolerance in the evening and at night with evidence for insulin resistance at night. Subsequently an endogenous circadian component, assessed in constant routine (CR), as well as an influence of sleep time, was described for glucose and insulin. Plasma triacylglycerol (TAG), the major lipid component of dietary fat circulating after a meal, also appears to be influenced by both the circadian clock and sleep time with higher levels during biological night (defined as the time between the onset and offset of melatonin secretion) despite identical hourly nutrient intake. These time-dependent differences in postprandial responses have implications for shiftworkers. In the case of an unadapted night shift worker, meals during work time will be taken during biological night. In simulated night shift conditions the TAG response to a standard meal, preceded by either a low-fat or a high-fat premeal, was higher after a nighttime meal than during a daytime meal, and the day/night difference was larger in men than in women. In real night shift workers in Antarctica, insulin, glucose, and TAG all showed an increased response after a nighttime meal (second day of night shift) compared to a daytime meal. Night shift workers are reported to have an approximately 1.5 times higher incidence of heart disease risk and also demonstrate higher TAG levels compared with matched dayworkers. As both insulin resistance and elevated circulating TAG are independent risk factors for heart disease, it is possible that meals at night may contribute to this risk.  相似文献   

3.
Shift workers are known to have an increased risk of developing cardiovascular disease (CVD) compared with day workers. An important factor contributing to this increased risk could be the increased incidence of postprandial metabolic risk factors for CVD among shift workers, as a consequence of the maladaptation of endogenous circadian rhythms to abrupt changes in shift times. We have previously shown that both simulated and real shift workers showed relatively impaired glucose and lipid tolerance if a single test meal was consumed between 00:00-02:00 h (night shift) compared with 12:00-14:00 h (day shift). The objective of the present study was to extend these observations to compare the cumulative metabolic effect of consecutive snacks/meals, as might normally be consumed throughout a period of night or day shift work. In a randomized crossover study, eight healthy nonobese men (20-33 yrs, BMI 20-25kg/m2) consumed a combination of two meals and a snack on two occasions following a standardized prestudy meal, simulating night and day shift working (total energy 2500 kcal: 40% fat, 50% carbohydrate, 10% protein). Meals were consumed at 01:00/ 13:00 h and 07:00/19:00h, and the snack at 04:00/16:00 h. Blood was taken after an overnight fast, and for 8 h following the first meal on each occasion, for the measurement of glucose, insulin, triacylglycerol (TAG), and nonesterified fatty acids (NEFA). RM-ANOVA (factors time and shift) showed a significant effect of shift for plasma TAG, with higher levels on simulated night compared to day shift (p < 0.05). There was a trend toward an effect of shift for plasma glucose, with higher plasma glucose at night (p = 0.08), and there was a time-shift interaction for plasma insulin levels (p < 0.01). NEFA levels were unaffected by shift. Inspection of the area under the plasma response curve (AUC) following each meal and snack revealed that the differences in lipid tolerance occurred throughout the study, with greatest differences occurring following the mid-shift snack. In contrast, glucose tolerance was relatively impaired following the first night-time meal, with no differences observed following the second meal. Plasma insulin levels were significantly lower following the first meal (p < 0.05), but significantly higher following the second meal (p < 0.01) on the simulated night shift. These findings confirm our previous observations of raised postprandial TAG and glucose at night, and show that sequential meal ingestion has a more pronounced effect on subsequent lipid than carbohydrate tolerance.  相似文献   

4.
Shift workers are known to have an increased risk of developing cardiovascular disease (CVD) compared with day workers. An important factor contributing to this increased risk could be the increased incidence of postprandial metabolic risk factors for CVD among shift workers, as a consequence of the maladaptation of endogenous circadian rhythms to abrupt changes in shift times. We have previously shown that both simulated and real shift workers showed relatively impaired glucose and lipid tolerance if a single test meal was consumed between 00:00–02:00 h (night shift) compared with 12:00–14:00 h (day shift). The objective of the present study was to extend these observations to compare the cumulative metabolic effect of consecutive snacks/meals, as might normally be consumed throughout a period of night or day shift work. In a randomized crossover study, eight healthy nonobese men (20–33 yrs, BMI 20–25 kg/m2) consumed a combination of two meals and a snack on two occasions following a standardized prestudy meal, simulating night and day shift working (total energy 2500 kcal: 40% fat, 50% carbohydrate, 10% protein). Meals were consumed at 01:00/13:00 h and 07:00/19:00 h, and the snack at 04:00/16:00 h. Blood was taken after an overnight fast, and for 8 h following the first meal on each occasion, for the measurement of glucose, insulin, triacylglycerol (TAG), and nonesterified fatty acids (NEFA). RM-ANOVA (factors time and shift) showed a significant effect of shift for plasma TAG, with higher levels on simulated night compared to day shift (p < 0.05). There was a trend toward an effect of shift for plasma glucose, with higher plasma glucose at night (p = 0.08), and there was a time-shift interaction for plasma insulin levels (p < 0.01). NEFA levels were unaffected by shift. Inspection of the area under the plasma response curve (AUC) following each meal and snack revealed that the differences in lipid tolerance occurred throughout the study, with greatest differences occurring following the mid-shift snack. In contrast, glucose tolerance was relatively impaired following the first night-time meal, with no differences observed following the second meal. Plasma insulin levels were significantly lower following the first meal (p < 0.05), but significantly higher following the second meal (p < 0.01) on the simulated night shift. These findings confirm our previous observations of raised postprandial TAG and glucose at night, and show that sequential meal ingestion has a more pronounced effect on subsequent lipid than carbohydrate tolerance.  相似文献   

5.
This study compared the postprandial triacylglycerol (TAG) response to a high-fat meal in trained and untrained normolipidemic young adults after 2 days' abstinence from exercise. Fifty-three subjects (11 endurance-trained men, 9 endurance-trained women, 10 sprint/strength-trained men, 11 untrained men, 11 untrained women) consumed a meal (1.2 g fat, 1.1 g carbohydrate, 66 kJ per kg body mass) after a 12-h fast. Venous blood samples were obtained in the fasted state and at intervals until 6 h. Postprandial responses were the areas under the plasma or serum concentration-vs.-time curves. Neither fasting TAG concentrations nor the postprandial TAG response differed between trained and untrained subjects. The insulinemic response was 29% lower in endurance-trained men than in untrained men [mean difference -37.4 (95% confidence interval -62.9 to -22.9) microIU/ml x h, P = 0.01]. Responses of plasma glucose, serum insulin, and plasma nonesterified fatty acids were all lower for endurance-trained men than for untrained men. These findings suggest that, in young adults, no effect of training on postprandial lipemia can be detected after 60 h without exercise. The effect on postprandial insulinemia may persist for longer.  相似文献   

6.
7.
Some features of the meal-related profile of ghrelin correspond to acute energy intake, suggesting a role in short-term energy homeostasis. Yet, no studies have examined this relationship across a typical day of eating when effects of time of day and or cumulative energy intake may also exist. AIM OF STUDY: To examine the relation between ghrelin and acute energy intake by quantifying changes in ghrelin over 24 hours in response to three typical meals and a snack occurring throughout the day. METHODS: Fourteen non-obese women consumed three meals and a snack at specific times; total ghrelin was measured repeatedly over 24 hours. RESULTS: Significant correlations existed between: 1) meal calories and the post-meal trough (r = - 0.36; p < 0.05), and 2) the sum of breakfast and lunch calories and subsequent dinner rise (r = - 0.45; p < 0.02) and 3) the sum of breakfast and lunch calories and dinner peak (r = - 0.54; p < 0.003). Thus, as energy intake increased across the day, pre-meal rises of subsequent meals were reduced. CONCLUSION: Meal-related profiles of ghrelin are not only associated with the energy content of specific meals, but also with the accumulated calories prior to a subsequent meal, suggesting a role in the modulation of acute energy homeostasis.  相似文献   

8.
Knowledge of the reproducibility of oral fat tolerance tests is important for experimental design and data interpretation. In this study, seven normolipidaemic men underwent two fat tolerance tests (blood taken fasting and for six hours after a meal containing 1.2 g fat, 1.2 g carbohydrate per kg body mass) with an interval of one week. Eleven normolipidaemic women underwent two fat tolerance tests--one during the follicular phase of the menstrual cycle, the other during the mid-luteal phase. Dietary intake was controlled for two days and subjects refrained from exercise for three days before each test. There was no significant difference in postprandial triglyceride responses between the two tests in the men (10.20 +/- 3.45 mmol/l.h vs. 9.68 +/- 2.77 mmol/l.h, NS) (mean +/- SD); intraclass correlation coefficient between the two tests was 0.93, and within-subject coefficient of variation was 10.1 %. In the women, the postprandial triglyceride response was lower in the luteal phase (6.75 +/- 1.83 mmol/l.h) than in the follicular phase (8.36 +/- 3.71 mmol/l.h) (p = 0.05), intraclass correlation was 0.65 and within-subject coefficient of variation was 23.2 %. These results suggest that, with adequate control of preceding lifestyle, reproducibility of postprandial triglyceride responses is high in men, but menstrual phase should be taken into consideration when studying these responses in women.  相似文献   

9.

Objective:

The aim of this study was to compare postprandial lipemia, oxidative stress, antioxidant activity, and insulinemia between a three and six isocaloric high‐carbohydrate meal frequency pattern in obese women.

Design and Methods:

In a counterbalanced order, eight obese women completed two, 12‐h conditions in which they consumed 1,500 calories (14% protein, 21% fat, and 65% carbohydrate) either as three 500 calorie liquid meals every 4‐h or six 250 calorie liquid meals every 2‐h. Blood samples were taken every 30 min and analyzed for triacylglycerol (TAG), total cholesterol, high‐density lipoprotein cholesterol, low‐density lipoprotein cholesterol, oxidized low‐density lipoprotein cholesterol, myeloperoxidase, paraoxonase‐1 activity, and insulin.

Results:

The TAG incremental area under the curve (iAUC) during the three meal condition (321 ± 129 mg/dl·12 h) was significantly lower (P = 0.04) compared with the six meal condition (481 ± 155 mg/dl·12 h). The insulin iAUC during the three meal condition (5,549 ± 1,007 pmol/l.12 h) was significantly higher (P = 0.05) compared with the six meal condition (4,230 ± 757 pmol/l.12 h). Meal frequency had no influence on the other biochemical variables.

Conclusions:

Collectively, a three and six isocaloric high‐carbohydrate meal frequency pattern differentially alters postprandial TAG and insulin concentrations but has no effect on postprandial cholesterol, oxidative stress, or antioxidant activity in obese women.  相似文献   

10.
The postprandial excursion of plasma triglyceride (TG) concentration is greater in men than in women. In this study, the disposition of dietary fat was examined in lean healthy men and women (n = 8/group) in either the overnight-fasted or fed (4.5 h after breakfast) states. A [14C]oleate tracer was incorporated into a test meal, providing 30% of total daily energy requirements. After ingestion of the test meal, measures of arteriovenous differences in TG and 14C across the leg were combined with needle biopsies of skeletal muscle and adipose tissue and respiratory gas collections to define the role of skeletal muscle in the clearance of dietary fat. The postprandial plasma TG and 14C tracer excursions were lower (P = 0.04) in women than in men in the overnight-fasted and fed states. Women, however, had significantly greater limb uptake of total TG compared with men on both the fasted (3,849 +/- 846 vs. 528 +/- 221 total micro mol over 6 h) and fed (4,847 +/- 979 vs. 1,571 +/- 334 total micromol over 6 h) days. This was also true for meal-derived 14C lipid uptake. 14C content of skeletal muscle tissue (micro Ci/g tissue) was significantly greater in women than in men 6 h after ingestion of the test meal. In contrast, 14C content of adipose tissue was not significantly different between men and women at 6 h. The main effect of nutritional state, fed vs. fasted, was to increase the postmeal glucose (P = 0.01) excursion (increase from baseline) and decrease the postmeal TG excursion (P = 0.02). These results support the notion that enhanced skeletal muscle clearance of lipoprotein TG in women contributes to their reduced postprandial TG excursion. Questions remain as to the mechanisms causing these sex-based differences in skeletal muscle TG uptake and metabolism. Furthermore, nutritional state can significantly impact postprandial metabolism in both men and women.  相似文献   

11.
Varying the time since the last meal is one means of manipulating feeding motivation. In order to use this method effectively it is necessary to know whether and the extent to which effects of one pre-meal interval are carried over to affect the behaviour during the following meals. Pre-meal interval (PMI) is defined here for practical purposes, for short meals, as the time between the start of two successive meals. The possibility that one unrestricted meal might buffer the effects of an 8h as opposed to a 4h PMI on aspects of feeding behaviour was studied with eight Scottish Blackface sheep. They were fed on a regime in which they were given access to food until they finished their meal and lay down (this always occurred within 60min) at which time the remaining food was withdrawn. Feeding behaviour was recorded during the meal after these 4 and 8h intervals, as well as during the following meal 4h later.At a meal after a PMI of 8h, compared to 4h, sheep had a higher intake per meal (mean+/-S.T.D. for 8 and 4h PMI, respectively: 604.4+/-78.8 and 430.1+/-100.9g; P<0.001), a longer meal duration (27.1+/-7.5 and 21.8+/-8.1min; P<0.001), and a tendency for a higher intake rate (23.8+/-6.2 and 21.9+/-8.2g/min; P=0.11). During the following meal 4h later these differences were smaller, but intake per meal still tended to be higher (430.8+/-81.5 and 338.5+/-45.6g; P<0.06) for sheep who had previously had the 8h PMI. Meal duration (21.9+/-7.2 and 20.6+/-7.08min; P=0.28) and intake rate (21.2+/-6.1 and 18.7+/-7.2g/min; P=0.13) were no longer different.A single meal after the different PMIs reduced differences in all three aspects of feeding behaviour observed during the subsequent meal, 4h later, but differences in intake per meal were still apparent. It is suggested that an additional meal may overcome the carry-over effect.  相似文献   

12.
A questionnaire was designed to assess the following: why working people chose to eat or not to eat at a particular time of day; the factors that influenced the type of food eaten; and subjective responses to the meal (hunger before, enjoyment during, satiety afterward). Self-assessments were done every 3 h during a typical week containing work and rest days, by one group of 50 day workers and another group of 43 night workers. During the night work hours compared to rest days, night workers evidenced a significantly altered food intake, with a greater frequency of cold rather than hot food (p < 0.001). The type and frequency of meals were influenced significantly more (p < 0.05) by habit and time availability and less by appetite. This pattern continued into the hours immediately after the night shift had ended. In day workers food intake during work hours, compared to rest days, was also influenced significantly more often (p < 0.05) by time availability than hunger, but less so than with night workers. Moreover, day workers were less dependent than night workers upon snacks (p = 0.01), and any significant differences from rest days did not continue beyond work hours. Not only did night workers change their eating habits during work days more than did day workers but also they looked forward to their meals significantly less (p < 0.001) and felt more bloated after consuming them (p < 0.05), such effects being present to some extent during their rest days also. These findings have clear implications for measures designed to ease eating problems that are commonly problematic in night workers.  相似文献   

13.
ABSTRACT

Current dietary trends show that humans consume up to 40% of their energy intake during the night. Those who habitually eat during the night are observed to have an increased risk of metabolic conditions such as type-2 diabetes and cardiovascular disease. Increasing evidence suggest that a biological consequence of eating during the night is a larger postprandial glucose response, compared to meals eaten earlier in the day. However, findings from individual acute postprandial studies have been inconsistent, due to variations in protocols. Therefore, this review aimed to systematically summarize findings from acute postprandial studies and investigate whether postprandial glucose and insulin response at night differs to during the day in healthy adults. This would indicate a possible physiological mechanism linking habitual nighttime eating and increased risk of metabolic conditions. Seven electronic databases were searched in February 2018. Included studies met the following criteria: had a day-time test between 0700 – 1600h, a nighttime test between 2000 and 0400h, the test meals were identical and consumed by the same participant at both day and night time points, preceded by a 3-h fast (minimum). Primary outcome measures were postprandial glucose and insulin incremental area under the curve (iAUC) or area under the curve (AUC). Studies that reported numerical data were included in the meta-analyses, conducted using Stata statistical software (version 13.0, StataCorp, College Station, TX, USA). For eligible studies that did not report numerical data, their authors’ conclusions on the effect of time of day on the primary outcome measures were summarized qualitatively. Full text of 172 articles were assessed for eligibility. Fifteen studies met the eligibility criteria, ten of which were included in the meta-analyses. Meta-analysis for glucose showed a lower postprandial glucose response in the day compared to during the night, after an identical meal (SMD = ?1.66; 95% CI, ?1.97 to ?1.36; p < .001). This was supported by the findings from included studies ineligible for meta-analysis. Meta-analysis also showed a lower postprandial insulin response in the day compared to during the night (SMD = ?0.35; 95% CI, ?0.63 to ?0.06; p = .016). However, findings from included studies ineligible for meta-analysis were inconsistent. Our results suggest poor glucose tolerance at night compared to the day. This may be a contributing factor to the increased risk of metabolic diseases observed in those who habitually eat during the night, such as shift workers.  相似文献   

14.
To evaluate the importance of protein digestion rate on protein deposition, we characterized leucine kinetics after ingestion of "protein" meals of identical amino acid composition and nitrogen contents but of different digestion rates. Four groups of five or six young men received an L-[1-13C]leucine infusion and one of the following 30-g protein meals: a single meal of slowly digested casein (CAS), a single meal of free amino acid mimicking casein composition (AA), a single meal of rapidly digested whey proteins (WP), or repeated meals of whey proteins (RPT-WP) mimicking slow digestion rate. Comparisons were made between "fast" (AA, WP) and "slow" (CAS, RPT-WP) meals of identical amino acid composition (AA vs. CAS, and WP vs. RPT-WP). The fast meals induced a strong, rapid, and transient increase of aminoacidemia, leucine flux, and oxidation. After slow meals, these parameters increased moderately but durably. Postprandial leucine balance over 7 h was higher after the slow than after the fast meals (CAS: 38 +/- 13 vs. AA: -12 +/- 11, P < 0.01; RPT-WP: 87 +/- 25 vs. WP: 6 +/- 19 micromol/kg, P < 0.05). Protein digestion rate is an independent factor modulating postprandial protein deposition.  相似文献   

15.
The purpose of this study was to examine the effect of resistance exercise on postprandial lipemia. Fourteen young men and women participated in each of three treatments: 1) control (Con), 2) resistance exercise (RE), and 3) aerobic exercise (AE) estimated to have an energy expenditure (EE) equal that for RE. Each trial consisted of performing a treatment on day 1 and ingesting a fat-tolerance test meal 16 h later (day 2). Resting metabolic rate and fat oxidation were measured at baseline and at 3 and 6 h postprandial on day 2. Blood was collected at baseline and at 0.5, 1, 2, 3, 4, 5, and 6 h after meal ingestion. RE and AE were similar in EE [1.7 +/- 0.1 vs. 1.6 +/- 0.1 (SE) MJ, respectively], as measured by using the Cosmed K4b(2). Baseline triglycerides (TG) were significantly lower after RE than after Con (19%) and AE (21%). Furthermore, the area under the postprandial response curve for TG, adjusted for baseline differences, was significantly lower after RE than after Con (14%) and AE (18%). Resting fat oxidation was significantly greater after RE than after Con (21%) and AE (28%). These results indicate that resistance exercise lowers baseline and postprandial TG, and increases resting fat oxidation, 16 h after exercise.  相似文献   

16.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

17.
We assessed the impact of 12h fixed night shift (19:00-07:00h) work, followed by 36h of off-time, on the sleep-wake cycle, sleep duration, self-perceived sleep quality, and work-time alertness on a group composed of 5 registered and 15 practical nurses. Wrist actigraphy (Ambulatory Monitoring, Inc.), with data analysis by the Cole-Kripke algorithm, was applied to determine sleep/wake episodes and their duration. The sleep episodes were divided into six categories: sleep during the night shift (x = 208.6; SD +/- 90.6 mins), sleep after the night shift (x = 138.7; SD +/- 79.6 min), sleep during the first night after the night work (x = 318.5; SD +/- 134.6 min), sleep before the night work (x = 104.3; SD +/- 44.1 min), diurnal sleep during the rest day (x = 70.5; SD +/- 43.0 min), and nocturnal sleep during the rest day (x = 310.4; SD +/- 188.9mins). A significant difference (p < .0001; T-test for dependent samples) was detected between the perceived quality of sleep of the three diurnal sleep categories compared to the three nocturnal sleep categories. Even thought the nurses slept (napped) during the night shift, their self-perceived alertness systematically decreased during it. Statistically significant differences were documented by one-way ANOVA (F = 40.534 p < .0001) among the alertness measurements done during the night shift. In particular, there was significant difference in the level of perceived alertness (p < .0001) between the 7th and 10th of the 12h night shift. These findings of decreased alertness during the terminal hours of the night shift are of concern, since they suggest risk of comprised patient care.  相似文献   

18.
Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men (n = 12) and women (n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 +/- 2 vs. 16 +/- 2%, P < 0.005) and lower body fat (12 +/- 1 vs. 7 +/- 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 +/- 3 vs. 45 +/- 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 +/- 2% in the follicular phase of the menstrual cycle and 10 +/- 1% in the luteal phase (P = NS). Variance in meal fatty acid uptake was somewhat (P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.  相似文献   

19.
OBJECTIVE--To assess whether a late evening meal would improve nitrogen balance in patients with cirrhosis of the liver. DESIGN--Randomised crossover study of meal schedules comparing three meals a day with four or six meals a day, the four and six meal schedules both including a late evening meal (2300). SETTING--Metabolic ward. PATIENTS--Seven men and two women aged 34-66 with cirrhosis of the liver (Child''s grade B). INTERVENTIONS--Patients spent two seven day periods in the ward. For five days of each period they received, in random order, isonitrogenous isocaloric diets supplied in three meals a day and in four or six meals a day. MAIN OUTCOME MEASURE--Nitrogen balance, calculated as the difference between dietary intake and the total of urinary, faecal, and integumental nitrogen loss. RESULTS--Faecal nitrogen loss was no different between three meals a day and four or six meals a day. On both four and six meals a day, however, patients had nitrogen balances that were more positive (or less negative) than on three meals a day (1.26 (SD 2.1) g/24 h v 0.26 (2.2) g/24 h, p less than 0.01). Six meals a day did not produce significantly better improvements in nitrogen balance than four meals a day. CONCLUSIONS--A late evening meal seemed to improve the efficiency of nitrogen metabolism, but longer term studies are needed to assess whether this leads to a better nutritional state.  相似文献   

20.
Objective: Diacylglycerol (DAG)‐rich oil has been suggested to suppress postprandial hyperlipidemia and promote negative caloric balance by increasing energy expenditure (EE), due to small intestine physiochemical dynamics that differ from triacylglycerol (TAG). We studied the effect of DAG on postprandial glucose/insulin metabolism by loading of carbohydrate with oil. Further, to reveal the mechanism for increased EE by DAG, we measured plasma serotonin, which is mostly present in the small intestine and mediates peripheral sympathetic thermogenesis. Methods and Procedures: Randomized crossover study with 2‐week wash‐out interval between differing fat ingestion. Seven male, lean, Japanese students ingested DAG or TAG oil with 40 g of carbohydrate. Measurements of metabolic parameters were performed before and at 2, 4, and 6 h after fat ingestion. Plasma serotonin levels and cholesterol concentration in each lipoprotein were measured using high‐performance liquid chromatography (HPLC). Results: The substitution of DAG for TAG decreased very‐low‐density lipoprotein‐cholesterol (VLDL‐C) by 45.6% at 2 h, and decreased serum insulin by 41.3% at 4 h after ingestion. The incremental area under the curve (IAUC) for VLDL‐C was positively correlated with the IAUC for insulin. Concurrently, DAG elevated plasma serotonin levels by 47.3% at 2 h, while TAG did not influence. Discussion: This study indicates that the substitution of DAG for TAG suppresses the postprandial increase in serum VLDL‐C and insulin. This study also demonstrates that DAG ingestion increases plasma serotonin, proposing a possible mechanism for a postprandial increase in EE by DAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号