首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previously constructed Escherichia coli transformant carrying a functional copy of bacteriophage phi X174 gene G on a plasmid, p phi XG, was used to isolate gene G mutants carrying temperature sensitive and lethal missense mutations. Two of the mutations have been characterized by sequencing: one carries a G --> A transition at residue 2821 producing a Gly --> Ser change in codon 143 of the G spike protein; the other carries an A --> G transition at residue 2678 producing Glu --> Gly change in codon 95. Sequencing DNA from 2 other mutants carrying lethal mutations that are rescued with p phi XG did not reveal any changes in the coding sequence. The lesion is believed to be in the intercistronic region between genes F and G. The adsorption kinetics for these mutants appear to be normal. Their burst size is about 25% that of wild type phi X174 on the host carrying p phi XG. These results along with previous results from the senior author's laboratory demonstrate that p phi XG can be used to rescue any gene G mutant of phi X174 regardless of the nature of the mutation involved.  相似文献   

2.
Mutagenesis at a specific position in a DNA sequence   总被引:25,自引:0,他引:25  
Predefined changes in a known DNA sequence were introduced by a general method. Oligodeoxyribonucleotides complementary to positions 582 to 593 of the viral DNA strand of the bacteriophage phiX174 am3 mutant (pGTATCCTACAAA), and to the wild type sequence in this region (pGTATCCTACAAA), were synthesized and used as specific mutagens. Each of these oligonucleotides was incorporated into a complete circular complementary strand when used as primer on a genetically heterologous viral strand template, by the combined action of subtilisin-treated Escherichia coli DNA polymerase I and T4 DNA ligase. Incomplete duplexes were removed or were inactivated by nuclease S1 and the products were used to transfect spheroplasts of E. coli. Both oligonucleotides induced specific mutations at high efficiency when used with heterologous template (15% mutants among progeny phage). The am phages isolated by this procedure are phenotypically gene E mutants, and contain A at position 587 of the viral strand. They thus appear identical with am3 and provide evidence that the change G leads to A at position 587 is sufficient to produce a defective E function. Since the template for the induction of am mutants carried another genetic marker (sB1), the strains carrying the induced mutations have the new genotype am3 sB1. It should be possible to introduce the am3 mutation into any known mutant strain of phi174 using this same oligonucleotide. Both possible transition mutations were induced in these experiments. In principle, the method could also induce transversions, insertions, and deletions. The method should be applicable to other circular DNAs of similar size, for example recombinant DNA plasmids.  相似文献   

3.
The gene II protein of bacteriophage f1 is a site-specific endonuclease required for initiation of phage viral strand DNA synthesis. Within gene II is another gene, X, encoding a protein of unknown function identical to the C-terminal 27% of the gene II protein, and separately translated from codon 300 (AUG) of gene II. By oligonucleotide mutagenesis, we constructed phage mutants in which this codon has been changed to UAG (amber) or UUG (leucine), and propagated them on cells carrying a cloned copy of gene X on a plasmid. The amber mutant makes no gene X protein, and cannot grow in the absence of the complementing plasmid; the leucine-inserting mutant can make gene X protein, and grows normally without the plasmid. Without gene X protein, phage DNA synthesis (particularly viral strand synthesis) is impaired. We discuss this finding in the context of other known in-frame overlapping genes (particularly genes A and A* of phage phi X174), many of which are also involved in the specific initiation of DNA synthesis, and suggest applications for the mutagenic strategy we employed.  相似文献   

4.
The A and A* proteins of phage phi X174 are encoded in the same reading frame in the viral genome; the smaller A protein is the result of a translational start signal with the A gene. To differentiate their respective functions, oligonucleotide-directed site-specific mutagenesis was used to change the ATG start codon of the phi X 174 A* gene, previously cloned into pCQV2 under lambda repressor control, into a TAG stop codon. The altered A gene was then inserted back into phi X replicative form DNA to produce an amber mutant, phi XamA*. Two different Escherichia coli amber suppressor strains infected with this mutant produced viable progeny phage with only a slight reduction in yield. In Su+ cells infected with phi XamA*, phi X gene A protein, altered at one amino acid, was synthesized at normal levels; A* protein was not detectable. These observations indicate that the A* protein increases the replicative efficiency of the phage, perhaps by shutting down host DNA replication, but is not required for replication of phi X174 DNA or the packaging of the viral strand under the conditions tested.  相似文献   

5.
As part of our studies on the molecular mechanisms of mutation by carcinogens we have synthesized 12 oligonucleotides (15-mers) containing an O6-alkylguanine residue at a preselected position for use as primers in the enzymatic synthesis of biologically active DNA. Ten of these oligonucleotides are derived from a minus strand sequence carrying the modified nucleotide in the third codon of gene G of bacteriophage phi X174 DNA. Two others are derived from plus strand sequences carrying the modification in the 12th codon of the human Ha-ras protooncogene. During this work several potentially serious side reactions, which could complicate interpretation of mutagenesis data, were observed. This paper describes a detailed study of these reactions. Since we were unable to avoid undesirable side products, we developed simple chromatographic methods for detecting and removing them.  相似文献   

6.
The origin of replication of the isometric single-stranded DNA bacteriophages is located in a specific sequence of 30 nucleotides, the origin region, which is highly conserved in these phage genomes. Plasmids harboring this origin region are subject to rolling-circle DNA replication and packaging of single-stranded (ss) plasmid DNA into phage coats in phi X174 or G4-phage-infected cells. This system was used to study the nucleotide sequence requirements for rolling-circle DNA replication and DNA packaging employing plasmids which contain the first 24, 25, 26, 27, 28 and the complete 30-base-pair (bp) origin region of phi X174. No difference in plasmid ss DNA packaging was observed for plasmids carrying only the 30-bp origin region and plasmids carrying the 30-bp origin region plus surrounding sequences (i.e. plasmids carrying the HaeIII restriction fragment Z6B of phi X174 replicative-form DNA). This indicates that all signals for DNA replication and phage morphogenesis are contained in the 30-bp origin region and that no contribution is made by sequences which immediately surround the origin region in the phi X174 genome. The efficiency of packaging of plasmid ssDNA for plasmids containing deletions in the right part of the origin region decreases drastically when compared with the plasmid containing the complete 30-bp origin region (for a plasmid carrying the first 28 bp of the origin region to approximately 5% and 0.5% in the phi X174 and G4 systems respectively). Previous studies [Fluit, A.C., Baas, P.D., van Boom, J.H., Veeneman, G.H. and Jansz, H.S. (1984) Nucleic Acids Res. 12, 6443--6454] have shown that the presence of the first 27 bp of the origin region is necessary as well as sufficient for cleavage of the viral strand in the origin region by phi X174 gene A protein. Moreover, Brown et al. [Brown, D.R., Schmidt-Glenewinkel, T., Reinberg, D. and Hurwitz, J. (1983) J. Biol. Chem. 258, 8402--8412] have shown that omission of the last 2 bp of the origin region does not interfere with phi X174 rolling-circle DNA replication in vitro. Our results therefore suggest that for optimal phage development in vivo, signals in the origin region are utilized which have not yet been noticed by the in vitro systems for phi X174 phage DNA replication and morphogenesis.  相似文献   

7.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

8.
Six different synthetic deoxyhexadecamers complementary to the origin of bacteriophage φX174, corresponding to nucleotides 4299 to 4314, except for one preselected nucleotide change were used as primers for DNA synthesis on wild-type φX2 DNA as a template. DNA synthesis was performed with Escherichia coli DNA polymerase I (Klenow fragment) in the presence of DNA ligase. Heteroduplex RFIV DNA was isolated and, after limited digestion with DNAase I, complementary strands containing the mutant primers were isolated. The biological activity of these complementary strands was assayed in spheroplasts. Spheroplasts were made from E. coli K58 ung? (uracil N-glycosylase) to prevent degradation of the complementary strands caused by uracil incorporation (Baas et al., 1980a).Using (5′-32P) end-labeled primers, it was shown that all tested DNA polymerase preparations, including phage T4 DNA polymerase, contained variable amounts of 5′ → 3′ exonuclease activity. This nick translation activity may result in removal of the mutation in the primers, and therefore in isolation of wild-type complementary DNA instead of mutant complementary DNA.Restriction enzyme analysis of completed RFIV DNA showed that the primers can initiate DNA synthesis at more than one place on the φX174 genome. These complications result in a mixed population of complementary strand DNAs synthesized in vitro. Nevertheless, the desired mutants were picked up with high frequency using a selection test that is based on the difference in ultraviolet light sensitivity of homoduplex and heteroduplex φX174 RF DNA. Heteroduplex φX174 RF DNA is two to three times more sensitive to ultraviolet light irradiation than is homoduplex φX174 RF DNA (Baas &; Jansz, 1971,1972). Phage DNA derived from single plaque lysates of two of the six mutant complementary strand DNA preparations yielded, after annealing with wild-type complementary strand DNA, heteroduplex DNA with high frequency. DNA sequence analysis in the origin region of RF DNA obtained from these two phage preparations revealed the presence of the expected mutation. RFI DNA of these two origin mutants was nicked by φX174 gene A protein in the same way as wild-type φX174 RFI DNA.Phage DNA derived from single plaque lysates of the other four mutant complementary strand DNA preparations yielded exclusively homoduplex DNA after annealing with wild-type complementary strand DNA. It is concluded that priming with these deoxyhexadecamers resulted in the synthesis of complementary φX174 DNA with lethal mutations. The implications of these results, the construction of two silent, viable φX174 origin mutants and the failure to detect four others, for the initiation mechanism of φX174 RF DNA replication are discussed.  相似文献   

9.
Processing of mispaired and unpaired bases in heteroduplex DNA in E. coli   总被引:1,自引:0,他引:1  
Bacteriophage lambda and phi X 174 DNAs, carrying sequenced mutations, have been used to construct in vitro defined species of heteroduplex DNA. Such heteroduplex DNAs were introduced by transfection, as single copies, into E. coli host cells. The progeny of individual heteroduplex molecules from each infective center was analyzed. The effect of the presence of GATC sequences (phi X 174 system) and of their methylation (lambda system) was tested. The following conclusions can be drawn: some mismatched base pairs trigger the process of mismatch repair, causing a localized strand-to-strand information transfer in heteroduplex DNA: transition mismatches G:T and A:C are efficiently repaired, whereas the six transversion mismatches are not always readily recognized and/or repaired. The recognition of transversion mismatches appears to depend on the neighbouring nucleotide sequence; single unpaired bases (frameshift mutation "mismatches") are recognized and repaired, some equally efficiently on both strands (longer and shorter), some more efficiently on the shorter (-1) strand; large non-homologies (about 800 bases) are not repaired by the Mut H, L, S, U system, but some other process repairs the non-homology with a relatively low efficiency; full methylation of GATC sequences inhibits mismatch repair on the methylated strand: this is the chemical basis of strand discrimination (old/new) in mismatch correction; unmethylated GATC sequences appear to improve mismatch repair of a G:T mismatch in phi X 174 DNA, but there may be some residual mismatch repair in GATC-free phi X 174, at least for some mismatches.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An M13 phage deletion mutant, M13 delta E101, developed as a vector for selecting DNA sequences that direct DNA strand initiation on a single-stranded template, has been used for cloning restriction enzyme digests of phi X174 replicative-form DNA. Initiation determinants, detected on the basis of clear-plaque formation by the chimeric phage, were found only in restriction fragments containing the unique effector site in phi X174 DNA for the Escherichia coli protein n' dATPase (ATPase). Furthermore, these sequences were functional only when cloned in the orientation in which the phi X174 viral strand was joined to the M13 viral strand. A 181-nucleotide viral strand fragment containing this initiation determinant confers a phi X174-type complementary-strand replication mechanism on M13 chimeras. The chimeric phage is converted to the parental replicative form in vivo by a mechanism resistant to rifampin, a specific inhibitor of the normal RNA polymerase-dependent mechanism of M13. In vitro, the chimeric single-stranded DNA promotes the assembly of a functional multiprotein priming complex, or primosome, identical to that utilized by intact phi X174 viral strand DNA. Chimeric phage containing the sequence complementary to the 181-nucleotide viral strand sequence shows no initiation capability, either in vivo or in vitro.  相似文献   

11.
This paper describes a systematic study of transition frequencies produced in vivo when a homologous series of O6-alkylguanine residues located at a preselected position in gene G of phi X174 form I' DNA (double-stranded, circular, covalently-closed, relaxed) is transfected into spheroplasts from two strains of Escherichia coli having normal DNA repair systems. Mutant frequencies were measured as percent of total phage produced by single bursts. The results are: (A) Synthetic DNA without any alkyl group gave a transition frequency of 0.02%. (B) In E. coli AB1157, the frequencies fall into two groups depending on the alkyl group: methyl and ethyl, 8-11%; n-propyl and n-butyl approximately 0.9%. (C) The average transition frequencies were higher in AB1157 than in C600. These data demonstrate that a single O6-alkylguanine residue can produce a specific transition at significant frequencies in cells with normal repair systems and that the mutant frequency depends upon the nature of the alkyl group and the cell type.  相似文献   

12.
Circular heteroduplex DNAs of bacteriophage phi X174 have been constructed carrying either a G:T (Eam+/Eam3) or a G:A (Bam+/Bam16) mismatch and containing either two, one or no GATC sequences. Mismatches were efficiently repaired in wild-type Escherichia coli transfected with phi X174 heteroduplexes only when two unmethylated GATC sequences were present in phi X174 DNA. The requirements for GATC sequences in substrate DNA and for the E. coli MutH function in E. coli mismatch repair can be alleviated by the presence of a persistent nick (transfection with nicked heteroduplex DNA in ligase temperature-sensitive mutant at 40 degrees C). A persistent nick in the GATC sequence is as effective in stimulating mutL- and mutS-dependent mismatch repair as a nick distant from the GATC sequence and from the mismatch. These observations suggest that the MutH protein participates in methyl-directed mismatch repair by recognizing unmethylated DNA GATC sequences and/or stimulating the nicking of unmethylated strands.  相似文献   

13.
Escherichia coli cells infected with gene H mutants of bacteriophage phi X174 produce two types of particles. The 110S particles contain single-stranded circular DNA; the 110S particles are not infectious, although their DNA is infectious for E. coli spheroplasts. The second type of particles, 70S particles, contain a fragment of single-stranded DNA ranging from 0.2 to 0.5 genome in length. This fragment DNA anneals only to restriction enzyme fragments of replicative-form DNA from the portion of the molecule corresponding to the origin and early region of phi X174 single-stranded synthesis, although full-round single-stranded DNA synthesis is occurring in the H mutant-infected cells. Different H mutant phages produce different proportions of 70S to 110S particles; those mutants producing the most 70S also exhibit the largest amount of degradation of intracellularly labeled DNA during infection. These results suggest that in H mutant-infected cells, full-length single-stranded DNA is synthesized; varying amounts of degradation of the single-stranded material occur, and the resulting fragment DNA is subsequently incorporated into 70S particles.  相似文献   

14.
Recombinant RF (replicate form) I DNAs containing the bacteriophage phi X174 gene A protein-recognition sequence are cleaved by the phi X A protein yielding a phi X RF II X A protein complex (Zipursky, S.L., Reinberg, D., and Hurwitz, J. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5182-5186). Such complexes support DNA synthesis in both RF I leads to SS(c) and RF I leads to RF I phi X DNA replication reactions in vitro. Two phi X A protein-recognition sequences were inserted into plasmid pBR322. Both sequences were contiguous with the same strand of the vector DNA and separated by 667 and 4275 base pairs. This recombinant plasmid (G27-4) was cleaved by the phi X A protein at either insert and both inserts support the initiation of RF leads to SS(c) DNA synthesis. This was verified by the finding that replication products were circular molecules of 667 and 4275 nucleotides. This finding is in keeping with the multifunctional activities associated with the phi X A protein; these include the site-specific nicking of RF I DNA which initiates DNA synthesis and site-specific termination resulting in the circularization of the displaced DNA strand. The phi X A protein and the Escherichia coli rep and SSb proteins catalyze the unwinding of phi X RF I DNA in vitro (Scott, J.F., Eisenberg, S., Bertsch, L.L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 193-197). Recombinant plasmid G27-4 RF I DNA was also unwound in vitro by this enzyme system; in this case, both circular and linear single-stranded DNA molecules of 667 and 4275 nucleotides, as well as full length circular single-stranded DNA were formed. Full length linear DNA was not detected. The two single-stranded circular DNA products formed as leading strands in RF leads to SS(c) reaction mixtures containing G27-4 RF I DNA differed in their ability to support lagging strand DNA synthesis. It was shown that the large single-stranded circular product included DNA sequences homologous to a replication factor Y effector sequence required for RF leads to RF and SS(c) leads to RF replication (Zipursky, S.L., and Marians, K.J. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6521-6525). The 4275-nucleotide, but not the 667-nucleotide, single-stranded circular DNA product was converted to a duplex structure.  相似文献   

15.
Genes and regulatory sequences of bacteriophage phi X174   总被引:3,自引:0,他引:3  
Fragments of the DNA of bacteriophage phi X174 were inserted in the plasmids pACYC177 and pBR322, in order to test the in vivo effects of separate phage genes and regulatory sequences. The phi X174 inserts were identified by recombination and complementation with phage mutants, followed by restriction enzyme analysis. The genes B, C, F and G can be maintained stably in the cell even when there is efficient expression of these viral genes. Recombinant plasmids with the complete genes D and E can only be maintained when the expression of these genes is completely blocked. Expression of complete H and J genes could not yet be demonstrated. The intact gene A was apparently lethal for the host cell, as it was never found in the recombinants. The genes F and G are expressed, even when they are not preceded by one of the well characterized viral or plasmid promoter sequences. Screening of the nucleotide sequence of phi X174 gives two promoter-like sequences just in front of the two genes. Viral sequences with replication signals (the phi X174 (+) origin of replication, the initiation site for complementary strand synthesis and the incompatibility sequence) appeared to be functional also when inserted in recombinant plasmids. A plasmid with the phi X (+) origin can be forced to a rolling circle mode of replication. The A protein produced by infecting phages works in trans on the cloned viral origin. The (-) origin can function as initiation signal for complementary strand synthesis during transduction of single-stranded plasmid DNA. The intracellular presence of the incompatibility sequence on a plasmid prevents propagation of infecting phages.  相似文献   

16.
The extracellular form of bacteriophage phi X174 consists of single-stranded DNA within an icosahedral capsid, which has short spikes at each of its vertices. Each spike is composed of gene G and H proteins, while the capsid itself consists of gene F protein. Since several molecules of gene H protein are injected into the cell along with the DNA, specific protein--protein and DNA--protein interactions must be broken when the genome exits and leaves an intact capsid structure at the receptor site. To demonstrate this we examined the eclipse (DNA ejection) reaction with two types of phi X174 mutants. The first contains missense mutations in a capsid or spike protein gene, and the second involves insertions or deletions in non-coding regions of the DNA. Using an improved procedure, the eclipse rate in vivo of the eclipse mutants Fcs70 has been redetermined over a larger temperature range than in previous studies. The three- to fivefold decrease in rate between 37 degrees C and 25 degrees C is due to an increase in both the enthalpy and entropy of activation when compared to the wild-type values of these kinetic parameters. This missence mutation also confers an increase in virus stability in 2 to 3 M-urea. In contrast to this, inserting 163 bases into the length of DNA packaged within the phi X174 capsid does not lead to a detectable change in eclipse rate over the same temperature range. yet this insertion into the J--F intercistronic region imparts a significant decrease in virus stability in urea. These results suggest that a specific set of non-covalent interactions is involved in phi X174 DNA ejection. This is supported by the small (50%), but significant, increase in eclipse rate that occurs when 27 bases are deleted from the J--F intercistronic region. The latter effect must be base-sequence-specific since no change in rate is observed when only seven of the 27 bases are deleted. Thus, the kinetics of the phi X174 eclipse reaction can be used as a sensitive probe of quaternary structure by correlating the change in reaction rate with alterations in amino acid and base sequences in the structural components of the virus.  相似文献   

17.
The influence of the bacteriophage phi X174 (phi X) C protein on the replication of bacteriophage phi X174 DNA has been examined. This small viral protein, which is required for the packaging of phi X DNA into proheads, inhibits leading strand DNA synthesis. The inhibitory effect of the phi X C protein requires a DNA template bearing an intact 30-base pair (bp) phi X origin of DNA replication that is the target site recognized by the phi X A protein. Removal of nucleotides from the 3' end of this 30-bp conserved origin sequence prevents the inhibitory effects of the phi X C protein. Leading strand replication of supercoiled DNA substrates containing the wild-type phi X replication origin results in the production of single-stranded circular DNA as well as the formation of small amounts of multimeric and sigma structures. These aberrant products are formed when the termination and reinitiation steps of the replication pathway reactions are skipped as the replication fork moves through the origin sequence. Replication carried out in the presence of the phi X C protein leads to a marked decrease in these aberrant structures. While the exact mechanism of action of the phi X C protein is not clear, the results presented here suggest that the phi X C protein slows the movement of the replication fork through the 30-bp origin sequence, thereby increasing the fidelity of the termination and reinitiation reactions. In keeping with the requirement for the phi X C protein for efficient packaging of progeny phi X DNA into proheads, the phi X C protein-mediated inhibition of leading strand synthesis is reversed by the addition of proteins essential for phi X bacteriophage formation. Incubation of plasmid DNA substrates bearing mutant 30 base pair phi X origin sequences in the complete packaging system results in the in vitro packaging and production of infectious particles in a manner consistent with the replication activity of the origin under study.  相似文献   

18.
The oligodeoxyribonucleotides, pCCCAGCCTCAA, which is complementary to nucleotides 5274--4284 of bacteriophage phi X174 viral DNA , and pCCCAGCCTAAA, which corresponds to the same sequence with a C leads to A change at the ninth nucleotide, were synthesized enzymatically. The second of these oligonucleotides was used as a primer for E. coli DNA polymerase I, from which the 5'-exonculease has been removed by proteolysis (Klenow enzyme), on wild-type phi X174 viral DNA template. After ligation, this yielded closed circular heteroduplex DNA with a G, A mismatch at nucleotide 5276. Transfection of E. coli spheroplasts with the heteroduplex DNA produced phage mutated at this nucleotide (G leads to T in the viral DNA) with high efficiency (13%). The mutant DNA, which corresponds to the gene B mutant am16, was reverted (T leads to G) by the wild type oligonucleotide with an efficiency of 19%. The nucleotide changes were established by sequence determination of the mutated viral DNA using the enzymatic terminator method. The production of specific transversion mutations, together with a previous demonstration of specific transition mutations (1), established that short enzymatically synthesized oligodeoxyribonucleotides can be used to induce any class of single nucleotide replacement with high efficiency and thus provide a powerful tool for specific genetic manipulations in circular genomes like that of phi X174.  相似文献   

19.
Mutagenesis resulting from depurination is an SOS process   总被引:10,自引:0,他引:10  
When bacteriophage phi X174 am3 DNA depurinated in vitro is transfected into E. coli spheroplasts prepared from bacteria previously exposed to UV light, a strong mutagenic response is observed. This mutagenic response does not occur in spheroplasts derived from pre-irradiated bacteria carrying defective recA, recF or umuC genes. These findings indicate that mutagenesis at apurinic sites is an SOS-dependent process. The mutagenic response is not dependent on the multiplicity of transfection. This suggests that mutagenesis is not mediated by recombination.  相似文献   

20.
Bacteriophage phi X174 viral strand DNA molecules shorter than genome length found late in the infectious cycle in Escherichia coli were 5' end labeled with 32P. Hybridization of the 32P-labeled molecules to restriction enzyme fragments of phi X replicative form DNA revealed an excess of phi X molecules whose 5' ends mapped in HaeIII fragments Z3 and Z4 in comparison with fragments Z1 and Z2. This suggests that initiation of phi X174 viral strand DNA synthesis may occur at internal sites on the complementary strand. There are several appropriately located sequences that might serve as n' (factor Y) recognition sequences and thereby facilitate discontinuous synthesis of the viral strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号