首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the immediate effects of temperature stress are well documented, the longer‐term effects of such stresses are more poorly known. In these experiments, we investigate the effects of suboptimal and supraoptimal temperatures during pharate adult development on fecundity in the flesh fly, Sarcophaga crassipalpis Macquart. A 1 h cold shock at ?10°C during the red‐eye pharate adult stage decreases the fecundity of both sexes. Induction of rapid cold hardening by pre‐treatment at 0°C for 2 h partially prevents reproductive impairment. Heat shock of pharate adults for 1 h at 45°C also reduces fecundity in both sexes, but inducing thermotolerance by pre‐treatment at 40°C for 2 h affords protection only to females. Males heat shocked at 45°C or first pre‐treated at 40°C consistently fail to transfer sperm to the females. The injury inflicted on males by heat shock is most pronounced when the stress is administered to pharate adults or adults; wandering larvae and true pupae are unaffected. The implications of these data for naturally occurring populations are discussed.  相似文献   

2.
Abstract Brief exposure to low (0oC) or high (40oC) temperature elicits a protective response that prevents injury when the flesh fly, Sarcophaga crassipalpis Macquart, is subjected to more severe cold (-10oC) or heat (45oC). Both the low and high temperature responses were found in all developmental stages of the fly, but were most pronounced in the pupal and pharate adult stages. The protective responses generated by brief exposure to 0 or 40oC appear similar in that both result in a rapid acquisition of cold or heat tolerance and a loss of protection after the flies are returned to 25oC. The protection generated by chilling is obvious within 10 min of exposure to 0oC while a 30 min exposure to 40oC is required to induce the high temperature protection. High temperature protects against cold shock injury within a narrow range (around 36oC) but we have no evidence that low temperature can protect against heat injury. We previously demonstrated that the rapid increase in cold tolerance correlates with concomitant increases in glycerol concentration, but in this study we found no significant elevation in glycerol in heat-shocked flies. Thus the physiological and biochemical bases for the rapid responses to cold and heat appear to be different.  相似文献   

3.
Nondiapausing larvae of the flesh fly, Sarcophaga bullata, responded to several forms of short-term environmental stress (low temperature, anoxia and desiccation) by accumulating glycerol. Elevation of this polyol, regardless of the type of stress that induced accumulation, conferred cold resistance: larvae with high glycerol levels were 3-4 times more tolerant of a 2h exposure to -10 degrees C than unstressed larvae. Protection against low temperature injury, as well as dehydration, was also attained by injection of exogenous glycerol into third instar larvae. This artificially induced cold hardiness was only temporary: when glycerol-injected larvae were exposed to -10 degrees C immediately after injection, survival was high, but none survived if they were injected and then held at 25 degrees C for 2 days before the -10 degrees C exposure. Larvae ligated behind the brain immediately after low temperature exposure failed to accumulate glycerol, but glycerol did accumulate in larvae ligated 6-24h after cold treatment, thus implying a critical role for the brain in initiating glycerol production. Interestingly, a much shorter exposure (2h) to low temperature was sufficient to reduce the maximum rate of water loss. Collectively, these observations suggest that multiple pathways may be exploited in response to stress: one pathway is most likely associated with rapid cold hardening (RCH) which generates immediate protection, and a second pathway remains activated for a longer period to enhance the initial protection afforded by glycerol.  相似文献   

4.
A rapid cold hardening process is reported in first instar larvae of Frankliniella occidentalis. When larvae are transferred directly from 20 degrees C to -11.5 degrees C for 2h there is 78% mortality, whereas exposure to 0 degrees C for 4h prior to transfer to -11.5 degrees C reduces mortality to 10%. The response can also be induced by exposure to 5 degrees C for 4h or by gradual cooling at rates between 0.1 and 0.5 degrees C min(-1.) The acquired cold tolerance is transient and is rapidly lost (after 1h at 20 degrees C). Rapid cold hardening extends survival times at -11.5 degrees C and depresses lethal temperatures in short (2h) exposures. Rearing at 15 degrees C (12L:12D), (a cold acclimation regime for F. occidentalis), does not protect against the cold shock induced by direct transfer to -11.5 degrees C (which rapid cold hardening does) but does extend survival time at -5 degrees C (i.e. increased chill tolerance) whilst rapid cold hardening does not. The rapid and longer term cold hardening responses in F. occidentalis therefore appear to have different underlying mechanisms.  相似文献   

5.
The sycamore lace bug, Corythucha ciliata is a new, invasive pest of Platanus trees in China. Although C. ciliata is often subjected to acute low temperatures in early winter and spring in northern and eastern China, the cold tolerance of C. ciliata has not been well studied. The objectives of this study were to determine whether adults of C. ciliata are capable of rapid cold hardening (RCH), and to compare the benefits of RCH vs. cold acclimation (ACC) in the laboratory. When the adult females incubated at 26 °C were transferred directly to the discriminating temperature (−12 °C) for 2 h, survival was only 22%. However, exposure to 0 °C for 4 h before transfer to −12 °C for 2 h induced RCH, i.e., increased survival to 68%. RCH could also be induced by gradual cooling of the insects at rates between 0.1 and 0.25 °C min−1. The protection against cold shock obtained through RCH at 0 °C for 4 h was lost within 1 h if the adults were returned to 26 °C before exposure to −12 °C. Survival at both −12 and −5 °C was greater for RCH-treated than for ACC-treated adults (for ACC, adults were kept at 15 °C for 5 days), and the lethal temperature (2 h exposure) was lower for RCH-treated than for ACC-treated adults. The results suggest that RCH may help C. ciliata survive the acute low temperatures that often occur in early winter and early spring in northern and eastern China.  相似文献   

6.
This paper describes the rapid cold hardening processes of the sweetpotato whitefly, Bemisia tabaci (Gennadius). It was found that all developmental stages of B. tabaci have the capacity of rapid cold hardening and the length of time required to induce maximal cold hardiness at 0 °C varies with stage. There was only 18.3% survival when adult whiteflies were transferred directly from 26 °C to -8.5 °C for 2 h. However, exposure to 0 °C for 1 h before transfer to -8.5 °C increased the survival to 81.2%. The whiteflies show "prefreeze" mortality when they were exposed to temperatures above the supercooling point (SCP), although the range of SCP of whiteflies is -26 °C to -29 °C. The rapid cold hardening had no effect on SCP and reduced the lower lethal temperature of adults from -9 °C to -11 °C. Rapid cold-hardened adults had a similar lifespan as the control group but deposited fewer eggs than nonhardened individuals. The expression profiles during cold hardening and recovery from this process revealed that HSP90 did not respond to cold stress. However, HSP70 and HSP20 were significantly induced by cold with different temporal expression patterns. These results suggest that the rapid cold hardening response is possibly advantageous to whiteflies that are often exposed to drastic temperature fluctuations in spring or autumn in northern China, and the expression of HSP70 and HSP20 may be associated with the cold tolerance of B. tabaci.  相似文献   

7.
A rapid cold hardening response was studied in females and males of the olive fruit fly Bactrocera (Dacus) oleae. When laboratory-reared females and males were transferred and maintained from the rearing temperature of 24 °C for 2 h to –6.5 °C approximately 5% survived. However, conditioning of both females and males for 2 h at various temperatures from 0 to 10 °C before their exposure for 2 h to –6.5 °C increased survival to 80 to 92%. A similar rapid cold hardening response in both females and males was also induced through gradual cooling of the flies at a rate of approximately 0.4 °C per min. The rapid increase in cold tolerance after prior conditioning of the flies to low temperatures, was rapidly lost when they returned to a higher temperature of 24 °C. In the field, in late February and early March, females and males were capable of a rapid cold hardening response. After exposure to the critical temperature they suffered a high mortality when tested in the afternoon and low mortality early in the morning on consecutive days, probably because of differences in the prevailing field temperatures a few hours before testing. This plasticity of cold tolerance gained through rapid cold hardening may allow the flies to survive during periods of the year with great fluctuation in circadian temperatures.  相似文献   

8.
The ability of first instar nymphs and newly moulted pre-reproductive adults of the grain aphid S. avenae to rapidly cold harden was investigated. When nymphs reared at 20 degrees C were transferred directly to -8 degrees C for 3 h, there was 18% survival. This exposure was selected as the discriminating temperature. Maximum increases in survival were achieved by acclimating nymphs for 2 h at 0 degrees C and adults for 3 h at 0 degrees C, resulting in survival of 83% and 68%, respectively. Cooling nymphs from 10 to 0 degrees C at different rates (1, 0.1 and 0.05 degrees C min(-1)) also increased cold hardiness, with the slowest rate of 0.05 degrees C min(-1) conferring the highest survival following exposure to the discriminating temperature. Adult aphids also expressed a rapid cold hardening response but to a lesser extent, with survival increasing from 16% to 68% following 3 h at 0 degrees C. There were no 'ecological costs' associated with rapid cold hardening in terms of development, longevity or fecundity. The data support the hypothesis that rapid cold hardening can be induced during the cooling phase of natural diurnal temperature cycles, allowing insects to track daily changes in environmental temperatures.  相似文献   

9.
A rapid cold hardening response was studied in diapause and non-diapause females of the predatory mite Euseius finlandicus. When laboratory reared diapause and non-diapause females were transferred and maintained from the rearing temperature of 20 degrees C for 2 h to -11.5 degrees C and -10 degrees C, 10 to 20% survived respectively. However, conditioning of diapause females for 4 h at a range of temperatures from 0 to 10 degrees C before their exposure for 2 h to -11.5 degrees C, increased survival to approximately 90%. Similarly, conditioning of non-diapause females for 4 h at 5 degrees C before their exposure for 2 h to -10 degrees C increased survival to 90%. A similar rapid cold hardening response in both diapause and non-diapause females was also induced through gradual cooling of the mites, at a rate of approximately 0.4 degrees C per min. The rapid increase in cold tolerance after prior conditioning of the mites to low temperatures, was rapidly lost when they returned to a higher temperature of 20 degrees C. Rapid cold hardening extended the survival time of diapause and non-diapause females at sub-zero temperatures. The cost of rapid cold hardening in reproductive potential after diapause termination was negligible. In non-diapause females, however, the increase in cold tolerance gained through gradual cooling could not prevent cold shock injuries, as both fecundity and survival were reduced.  相似文献   

10.
蠋蝽抗寒性对快速冷驯化的响应及其生理机制   总被引:1,自引:0,他引:1  
快速冷驯化可以提高某些昆虫的耐寒性.为了探讨不同冷驯化诱导温度对蝎蝽抗寒性的影响及其生理机制,以室内人工饲养的第3代蝎蝽成虫为对象,利用热电偶、液相色谱分析等技术手段,测定了经15、10、4℃冷驯化4h和梯度降温(依次在15、10、4℃各驯化4h)冷驯化后,蠋蝽成虫过冷却点、虫体含水率及小分子碳水化合物、甘油和氨基酸含量,及其在不同暴露温度(0、-5、-10℃)下的耐寒性.结果表明:处理后暴露在-10℃时,梯度处理组和4℃冷驯化处理组的蝎蝽成虫存活率为58.3%,其他处理组及对照组(室温饲养)的存活率显著降低,平均为8.9%;梯度处理组与4℃冷驯化处理组蠋蝽成虫过冷却点平均为-15.6℃,比其他处理平均降低1.3℃;各处理虫体含水率无显著差异,平均为61.8%;与其他各组相比,梯度处理组和4℃冷驯化组蠋蝽成虫的葡萄糖、山梨醇和甘油含量分别增加2.82、2.65和3.49倍,丙氨酸和谷氨酸含量分别增加51.3%和80.2%,海藻糖、甘露糖和脯氨酸含量分别下降68.4%、52.2%和30.2%,而果糖含量各组间无显著差异.快速冷驯化对蠋蝽成虫具有临界诱导温度值,梯度降温驯化不能在快速冷驯化的基础上提高蠋蝽成虫的抗寒性.  相似文献   

11.
Rapid cold-hardening (RCH) and cold acclimation (ACC) were examined in eggs of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). When eggs incubated at 25 degrees C were transferred directly to conditions of -22 degrees C for 2h, less than 30% survived, whereas exposure to 0 degrees C for 4h prior to transfer to -22 degrees C increased survival to nearly 60%. The rapidly enhanced cold tolerance (RCH) was transient and lost rapidly after 1h at 25 degrees C. Incubation at 15.5 degrees C for 9 days (ACC) also enhanced cold tolerance. Comparison of the cold tolerance of non-treated eggs and eggs pre-treated to give RCH, ACC, or ACC+RCH allowed the relationship between the two hardening processes to be determined. At a mild subzero temperature (-10 degrees C) an RCH effect was not detected, whereas only RCH is effective at the severest subzero temperature just above the SCP (-26 degrees C). At intermediate temperatures (-16, -22 and -25 degrees C), ACC and RCH enhanced survival in combination. Therefore, the two hardening processes have different physiological bases but operate concomitantly over a wide temperature range.  相似文献   

12.
Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia × hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher increment in cold tolerance (cf. two-or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3–4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible mechanisms underlying the plant response to daily short-term exposure to low temperature are proposed.  相似文献   

13.
This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately −20°C, all were killed by a direct 1 h exposure to −16°C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4°C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1‐h exposure to 0°C improved their subsequent tolerance of −14 and −16°C. In response to heat stress, fewer than 20% of the bugs survived a 1‐h exposure to 46°C, and nearly all were killed at 48°C. Dehydration, heat acclimation at 30°C for 2 weeks and rapid heat hardening at 37°C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses.  相似文献   

14.
Three developmental stages (pupae, early pharate and late pharate adults) of Callosobruchus subinnotatus (Pic.) were investigated for their tolerance or susceptibility to four modified atmospheres. Two of these atmospheres were hypercarbic and two were hypoxic. The hypercarbic atmospheres were found to cause mortality earlier than hypoxic atmospheres. Late pharate adults died earlier than pupae or early pharate adults. Late pharate adults that survived the exposure took a longer time to eclose than the pupae or early pharate adult.Using high resolution microrespirometric techniques, it was possible to record the oxygen consumption rate and CO(2) output of different developmental stages in air. The metabolic rate was determined manometrically as the oxygen uptake rate at an ambient temperature of 25 degrees C. The oxygen uptake rate differed significantly between groups of 20 individuals of different stages (p<0.01; t-test). The lowest rate of oxygen uptake (510.6+/-52.2 &mgr;l g(-1) h(-1)) was recorded in pupae. Higher oxygen uptake rates were found in early pharate adults (668.4+/-45.6 &mgr;l g(-1) h(-1)) and late pharate adults (1171.2+/-45.0 &mgr;l g(-1) h(-1)), and adult beetles (1310.4+/-53.4 &mgr;l g(-1) h(-1)). The patterns of CO(2) release were similar to those of oxygen uptake. CO(2) release was highest in eclosed adults and late pharate adults followed by early pharate adults, and lowest in pupae. The mode of CO(2) release ranged from continuous CO(2) release in pupae to discontinuous CO(2) release in late pharate and eclosed adults. Thus, high metabolic rates, and perhaps, in conjunction with discontinuous CO(2) of late pharate adults are responsible for their higher susceptibility to modified atmospheres than pupae and early pharate adults.  相似文献   

15.
陈浩  方程  许向利  仵均祥 《昆虫学报》2014,57(6):696-702
【目的】梨小食心虫Grapholita molesta (Busck)(鳞翅目:卷蛾科)是一种世界性的害虫,能使蔷薇科的果树严重减产。本研究旨在评估此害虫的耐热性及适应性。【方法】将梨小食心虫成虫暴露在不同温度(36, 38, 40, 42, 44 和46℃)和不同暴露时间(0.5, 1, 2, 4和8 h)下,测定其存活率以及短期高温(38或40℃热驯化1 h)对其热耐受力、寿命、生殖力及卵孵化率的影响。【结果】随着高温暴露时间的延长,梨小食心虫成虫存活率下降。在38或40℃热驯化1 h后,能显著提高梨小食心虫成虫在42℃下2 h的存活率(P<0.05)。在41℃处理1 h,梨小食心虫出现热休克现象,其寿命显著延长,但产卵量显著下降。进一步的试验证明雄虫受高温影响较大,导致与其配对后的雌虫产卵量降低。然而,不论亲代受到怎样的热刺激,其后代的孵化率均不受影响。【结论】结果说明,超过41℃,1 h的高温能对梨小食心虫带来负面影响,但梨小食心虫成虫有适应高温的潜力。  相似文献   

16.
The sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae), is an invasive exotic pest on Platanus trees in China. This study assessed the thermotolerance of C. ciliata in the laboratory. Detailed experiments were conducted on the effects of high temperature (35, 37, 39, 41, 43, and 45 °C), duration of exposure (0.5, 1, 2, 4, 6, and 8 h), and developmental stage (egg, nymph, and adult) on survival of the bug. Meanwhile, the effects of heat hardening on survival at lethal temperature (exposure to 33, 35, 37, 39, and 41 °C for 1 h prior to transfer to 43 °C for 2 h) were also assessed for nymphs and adults. Survival of eggs, nymphs, and adults was not affected by temperatures between 35 and 39 °C, but declined rapidly with increasing duration of exposure (from 0.5 to 8 h) at temperatures ≥41 °C. The lethal temperature that caused mortality of 50% (Ltemp50) of all developmental stages decreased with increasing duration of exposure from 0.5 to 8 h. The Ltemp50 for nymphs was 44.3, 42.0, and 39.0 °C after 0.5, 2, and 8 h exposure, respectively. Thermotolerance was the highest in eggs, followed by adults and then nymphs. Thermotolerance was slightly greater for adult males than for adult females. The ability of nymphs, females, and males to survive exposure to 43 °C for 2 h significantly increased by heat hardening, i.e., by exposure to a non‐lethal high temperature for 1 h; the optimal heat‐hardening temperature was 37 °C. The results indicate that survival of C. ciliata at heat‐shock temperatures depended on both the temperature and the duration of exposure, and the tolerance to heat shock was enhanced by heat hardening. The thermotolerance of C. ciliata may partially explain why C. ciliata has been rapidly spreading on Platanus trees in southern provinces of China.  相似文献   

17.
When pharate adults of the flesh fly Sarcophaga crassipalpis are exposed to 40°C for 4 h they become more tolerant of high temperatures that are normally lethal (thermotolerance). In contrast, a 1-h exposure to 45°C decreases tolerance to a subsequent high temperature challenge (thermosensitivity). While control flies experience little mortality when held at 35°C for 24–48 h the thermosensitized flies die when exposed to 35°C. Sensitivity to a second thermal challenge slowly decays over a 72-h period. The acquisition of thermotolerance prevents the development of thermosensitivity. Brains from thermosensitized flies cultured at 43°C express the 72-kDa heat-shock protein and normal protein synthesis is inhibited. This implies that development of thermosensitivity is not associated with a loss in the capacity to express the 72-kDa heat-shock protein.Abbreviations ICN ICN Biomedicals, Inc. PO Box 19536, Irvine, CA 92713-9921 - LD light dark cycle - LT50 time required to kill 50% of the test animals - SDS sodium dodecyl sulfate - TRIS Tris(hydroxymethyl)aminomethane  相似文献   

18.
Abstract.  1. Cold tolerance is a fundamental adaptation of insects to high latitudes. Flexibility in the cold hardening process, in turn, provides a useful indicator of the extent to which polar insects can respond to spatial and temporal variability in habitat temperature.
2. A scaling approach was adopted to investigate flexibility in the cold tolerance of the high Arctic collembolan, Hypogastrura tullbergi , over different time-scales. The cold hardiness of animals was compared from diurnal warming and cooling phases in the field, and controlled acclimation and cooling treatments in the laboratory. Plasticity in acclimation responses was examined using three parameters: low temperature survival, cold shock survival, and supercooling points (SCPs).
3. Over time-scales of 24–48 h, both field animals from warm diurnal phases and laboratory cultures from a 'warm' acclimation regime (18 °C) consistently showed greater or equivalent cold hardiness to animals from cool diurnal phases and acclimation regimes (3 °C).
4. No significant evidence was found of low temperature acclimation after either hours or days of low temperature exposure. The cold hardiness of H. tullbergi remained 'seasonal' in character and mortality throughout was indicative of the summer state of acclimatization.
5. These data suggest that H. tullbergi employs an 'all or nothing' cryoprotective strategy, cold hardening at seasonal but not diel-temporal scales.
6. It is hypothesised that rapid cold hardening offers little advantage to these high Arctic arthropods because sub-zero habitat temperatures during the summer on West Spitsbergen are rare and behavioural migration into soil profiles offers sufficient buffering against low summer temperatures.  相似文献   

19.
Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion) or death (apoptosis, necrosis) responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40 degrees C, 1 h) or cold (5 or 0 degrees C, 1 h) shock and then subjected to a second shock for 12 h at 40 or 0 degrees C, respectively, after 8, 18, 24 and 72 h at 28 degrees C (control temperature). As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0 degrees C were more effective than the temperatures of 35 and 5 degrees C in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.  相似文献   

20.
Painted turtles hibernating during winter may endure long-term exposure to low temperature and anoxia. These two conditions may affect the aerobic capacity of a tissue and might be of particular importance to the cardiac muscle normally highly reliant on aerobic energy production. The present study addressed how hibernation affects respiratory characteristics of mitochondria in situ and the metabolic pattern of turtle myocardium. Painted turtles were acclimated to control (25 degrees C), cold (5 degrees C) normoxic and cold anoxic conditions. In saponin-skinned myocardial fibres, cold acclimation increased mitochondrial respiratory capacity and decreased apparent ADP-affinity. Concomitant anoxia did not affect this. Creatine increased the apparent ADP-affinity to similar values in the three acclimation groups, suggesting a functional coupling of creatine kinase to mitochondrial respiration. As to the metabolic pattern, cold acclimation decreased glycolytic capacity in terms of pyruvate kinase activity and increased lactate dehydrogenase (LHD) activity. Concomitant anoxia counteracted the cold-induced decrease in pyruvate kinase activity and increased creatine kinase activity. In conclusion, cold acclimation seems to increase aerobic and decrease anaerobic energy production capacity in painted turtle myocardium. Importantly, anoxia does not affect the mitochondrial functional integrity but seems to increase the capacity for anaerobic energy production and energy buffering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号