首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
几种薏苡的过氧化物酶和多酚氧化酶同工酶分析   总被引:2,自引:0,他引:2  
曾艳华  谢莉  韩永华 《生物学杂志》2007,24(5):35-36,43
用聚丙烯酰胺凝胶电泳(PAGE)的方法,对薏苡,野生薏苡和水生薏苡的几个不同种质分别进行了过氧化物酶(POD)和多酚氧化酶(PPO)的同工酶酶谱分析,结果表明:POD和PPO含量丰富,活性强,酶谱复杂,酶带清晰,稳定,种间差异明显。结果可以作为薏苡研究种质亲缘关系的基础。  相似文献   

2.
运用丙酮浸漬干燥、磷酸盐缓冲液提取、低温离心、硫酸铵沉淀、DEAE-Sephadex(A-50)、Sephadex(G-75) 和DEAE-celluse(DE-52)层析等方法从苹果中分离获得一种新的含铜酶蛋白,该酶被命名为多酚氧化酶Ⅱ(polyphenol oxidase Ⅱ, PPOⅡ),纯化倍数是215,纯化收率是23%.PAGE、SDS-PAGE和MALDI-TOF 等技术用于测定所获的酶的纯度和分子量.在PAGE和SDS-PAGE 均显示一条带,表明PPOⅡ只由一个亚基组成,且已达到单一组分(MALDI-TOF的结果更证实了这一点).SDS-PAGE 和 MALDI-TOF 的结果都表明PPO的分子量为 38204 Da.pH值对酶活性和稳定性研究的结果显示,从pH值4.0~7.0随着pH值的增加,酶活性也不断增加;从pH值 7.0~11.0, 酶活性不断降低.PPOⅡ的最适pH值为6.6最适温度为30℃.  相似文献   

3.
Import, targeting, and processing of a plant polyphenol oxidase.   总被引:14,自引:4,他引:10  
A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo.  相似文献   

4.
Polyphenol oxidase (PPO), a metalloenzyme containing a type-3 copper center, is produced by many species of plants, fungi, and bacteria. There is great variability in the subunit molecular mass reported for PPO, even from a single species. In some cases, experimental evidence (usually protein sequencing by Edman degradation) indicates that the variability in molecular mass for PPO from a given species is the result of proteolytic processing at the N and/or C-termini of the protein. In order to identify specific sequence regions where proteolysis occurs in PPO from most species, the experimentally established N and C-termini of these proteolyzed enzymes were compared to the protein sequences of other PPOs for which the N and C-termini have not been established by protein sequencing methods. In all cases the N-terminal proteolysis sites were located prior to a conserved arginine residue, and the C-terminal proteolysis sites were located following a conserved tyrosine motif. Based on the sites of proteolysis, molecular masses were calculated for the enzymes, and the calculated values were used to rationalize the varying molecular masses reported in the literature. To determine the structural implications of N and C-terminal proteolysis, the proteolysis sites were related to the two available PPO structures: Ipomoea batatas catechol oxidase and Streptomyces castaneoglobisporus tyrosinase. A structural “core” region that appears to be essential for structural stability and enzymatic activity was identified.  相似文献   

5.
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.  相似文献   

6.
Polyphenol oxidase (PPO, EC 1.14.18.1) was extracted from celery roots (Apium graveolens L.) with 0.1 M phosphate buffer, pH 7.0. The PPO was partially purified by (NH4)2SO4 and dialysis. Substrate specificity experiments were carried out with catechol, pyrogallol, L-DOPA, p-cresol, resorcinol, and tyrosine. The Km for pyrogallol, catechol, and L-DOPA were 4.5, 8.3, and 6.2mM, respectively, at 25 degrees C. Data for Vmax/Km values, which represent catalytic efficiency, show that pyrogallol has the highest value. The optimum pH and temperature were determined with catechol, pyrogallol, and L-DOPA. Optimum pH was 7.0 for catechol and L-DOPA, and 7.5 for pyrogallol. Optimum temperatures for maximum PPO activity were 25 degrees C for pyrogallol, 40 degrees C for catechol, and 45 degrees C for L-DOPA. Heat inactivation studies showed a decrease in enzymatic activity at temperatures above 60 degrees C. The order of inhibitor effectiveness was: L-cysteine > ascorbic acid > glycine > resorcinol > NaCl.  相似文献   

7.
The purification of polyphenol oxidase from tobacco.   总被引:14,自引:0,他引:14  
A new polyphenol oxidase (PPO) named PPO II was purified from tobacco (Nicotiana tobacum) by using acetone powder, ammonium sulfate precipitation, and column chromatography on DEAE-Sephadex A-50, Sephadex G-75, and CM-Sephadex C-50. It has an active site of a pair of type 3 coppers bridged to phenolate oxygen, which represents a new catalytic mechanism for polyphenol oxidase. PAGE, SDS-PAGE, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry of the purified enzyme demonstrated that the enzyme is a single band with a molecular mass 35,600 Da. Biochemical characteristics include the optimum pH at 6.0, optimum temperature at 40 degrees C, and K(m) of 1.2 mM for catechol as substrate (pH 6.5, 30 degrees C). Substrate specificity studies indicate that the enzyme is of the catechol oxidase family. PPO II inhibits cultures of Escherichia coli and it accumulates on the wounded sites of tobacco leaves indicating that it may act as a defense role in plant defense systems.  相似文献   

8.
Yu H  Kowalski SP  Steffens JC 《Plant physiology》1992,100(4):1885-1890
Tetralobulate glandular trichomes are present on the foliage of many solanaceous species. Resistance of many of these species to insects is conditioned by the ability of trichomes to rupture upon contact and to rapidly polymerize their contents, resulting in entrapment of insects in hardened trichome exudate. In the wild potato, Solanum berthaultii, polymerization of trichome exudate is initiated by a soluble Mr 59,000 polyphenol oxidase (PPO), which is a dominant protein constituent of the organ. PPOs, although ubiquitous in angiosperms, typically display great heterogeneity in molecular weight and are found at low levels in plant cells. Because of the unusually high accumulation and tissue-specific expression of the Mr 59,000 PPO in S. berthaultii glandular trichomes, we analyzed trichome proteins of a number of Lycopersicon and Solanum species to assess the extent to which possession of the Mr 59,000 PPO is conserved. Trichomes were collected manually and examined for PPO activity, immuno-cross-reactivity with S. berthaultiiMr 59,000 PPO, and protein content. In addition, N-terminal amino acid sequences were obtained for five trichome PPOs. All species analyzed possessed trichome PPOs similar in structure and level of expression to that of S. berthaultii. The relationship between sequences and structures of these conserved PPOs and the variable PPOs of leaf is discussed.  相似文献   

9.
Abstract

The ubiquitous type-3 copper enzyme polyphenol oxidase (PPO) has found itself the subject of profound inhibitor research due to its role in fruit and vegetable browning and mammalian pigmentation. The enzyme itself has also been applied in the fields of bioremediation, biocatalysis and biosensing. However, the nature of PPO substrate specificity has remained elusive despite years of study. Numerous theories have been proposed to account for the difference in tyrosinase and catechol oxidase activity. The “blocker residue” theory suggests that bulky residues near the active site cover CuA, preventing monophenol coordination. The “second shell” theory suggests that residues distant (~8?Å) from the active site, guide and position substrates within the active site based on their properties e.g., hydrophobic, electrostatic. It is also hypothesized that binding specificity is related to oxidation mechanisms of the catalytic cycle, conferred by coordination of a conserved water molecule by other conserved residues. In this review, we highlight recent developments in the structural and mechanistic studies of PPOs and consolidate key concepts in our understanding toward the substrate specificity of PPOs.  相似文献   

10.
11.
12.
Iaa oxidase and polyphenol oxidase activities of peanut peroxidase isozymes   总被引:1,自引:0,他引:1  
Four anionic isozymes (A1, A2, A4 and A5) from peanut cells in suspension medium possessed IAA oxidase and polyphenol oxidase activities. The specific activities of each of the enzymes differed among the 4 isozymes. The pH optima established in these assays for peroxidase was acidic, for IAA oxidase neutral and for polyphenol oxidase alkaline. All 4 isozymes had different Km and Vmax for the enzyme activities of peroxidase and polyphenol oxidase. The sigmoid kinetics from the IAA oxidase assays for the isozymes probably indicates an allosteric nature.  相似文献   

13.
Polyphenol oxidase is the enzyme responsible for enzymatic browning in sweetpotato that decreases the commercial value of sweetpotato products. Here we reported the cloning and characterization of a new cDNA encoding PPO from sweetpotato, designated as IbPPO (GeneBank accession number: AY822711). The full-length cDNA of IbPPO is 1984 bp with a 1767 bp open reading frame (ORF) encoding a 588 amino acid polypeptide with a calculated molecular weight of 65.7 kDa and theoretical pI of 6.28. The coding sequence of IbPPO was also directly amplified from the genomic DNA of sweetpotato that demonstrated that IbPPO was an intron-free gene. The computational comparative analysis revealed that IbPPO showed homology to other PPOs of plant origin and contained a 50 amino acid plastidial transit peptide at its N-terminal and the two conserved CuA and CuB copper-binding motifs in the catalytic region of IbPPO. A highly conserved serine-rich motif was firstly found in the transit peptides of plant PPO enzymes. Then the homology based structural modeling of IbPPO showed that IbPPO had the typical structure of PPO: the catalytic copper center was accommodated in a central four-helix bundle located in a hydrophobic pocket close to the surface. Finally, the results of the semiquantitative RT-PCR analysis of IbPPO in different tissues demonstrated that IbPPO could express in all the organs of sweetpotato including mature leaves, young leaves, the stems of mature leaves (petioles), the storage roots, and the veins but at different levels. The highest-level expression of IbPPO was found in the veins, followed by storage roots, young leaves and mature leaves; and the lowest-level expression of IbPPO was found in petioles. The present researches will facilitate the development of antibrown sweetpotato by genetic engineering. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 6, pp. 1006–1012. The article was submitted by the authors in English.  相似文献   

14.
Catechin oxidation by peach polyphenol oxidase was performed in a pH range of 3.5-8.0. At acidic pH, maximal spectral changes were observed at 390nm and at pH 7.5, at 430nm. Catechin oxidation was studied at pH 7.5 to avoid the formation of free radicals. The results obtained allowed us to propose a pathway for the enzymatic oxidation of catechin, according to which enzymatic oxidation produces the corresponding catechin-o-quinone, which suffers the nucleophilic attack of another catechin unit, leading to the formation of a dimer. This dimer is then oxidized by the enzymatically generated o-quinone. The progress curves obtained for catechin oxidation by PPO showed a lag period, whose length changed with enzyme and substrate concentrations, and which must have been caused by the chemical reactions taking place after the enzymatic reaction. The results obtained by simulation of the model produced the same qualitative dependences as obtained experimentally.  相似文献   

15.
A new strategy for the construction of a polyphenol oxidase carbon paste biosensor for paracetamol detection is reported. The eggplant (Solanum melongena) was processed to collect the polyphenol oxidase as an enzyme that was incorporated in the carbon paste sensor construction. The constructed sensor displayed high sensitivity and good selection for paracetamol detection and recognition. Optimized conditions included pH 6.0 (highest activity), pH 7.0 (highest stability), pulse amplitude of 50?mV, and 15% of vegetable extract per carbon paste. The sensor displayed a linear range from 20 to 200?µM, with a detection limit of 5?µM. Application of the sensor to paracetamol determination in tablet and oral solutions have shown satisfactory results. The efficiency of the method showed very good repeatability ranging between 1.26 and 1.72% relative standard deviation for interday analysis, while recoveries for paracetamol varied between 97.5 and 99.8% for the voltammetric determination. The strategy for a simple, low cost, and efficient eggplant polyphenol oxidase sensor showcased in this work provides an opportunity for the detection of other phenolic compounds in various matrices.  相似文献   

16.
Activation of polyphenol oxidase of chloroplasts   总被引:2,自引:2,他引:2       下载免费PDF全文
Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or —18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.  相似文献   

17.
Characterization of polyphenol oxidase in coffee   总被引:11,自引:0,他引:11  
Polyphenol oxidase (PPO) was characterized in partially purified extracts of leaves (PPO-L) and fruit endosperm (PPO-E) of coffee (Coffea arabica L.). PPO activity was higher in early developmental stages of both leaves and endosperm of fruits. Wounding or exposure of coffee leaves to methyl jasmonate increased PPO activity 1.5-4-fold. PPO was not latent and was not activated by protease treatment. PPO activity was stimulated 10-15% with sodium dodecyl sulphate (SDS) at 0.35-1.75 mM, but at higher concentrations activities were similar to the control samples, without detergent. Prolonged incubation of extracts with trypsin or proteinase K inhibited PPO activity but pepsin had no effect. Inhibition of PPO with proteinase K was increased in the presence of SDS. PPO activity from both tissues was optimal at pH 6-7 and at an assay temperature of 30 degrees C. Activity was highest with chlorogenic acid as substrate with a Km of 0.882 mM (PPO-L) and 2.27 mM (PPO-E). Hexadecyl trimethyl-ammonium bromide, polyvinylpyrrolidone 40. cinnamic acid and salicylhydroxamic acid inhibited PPO from both tissues. Both enzymes were inactivated by heat but the activity in endosperm extracts was more heat labile than that from leaves. The apparent Mr determined by gel filtration was 46 (PPO-L) and 50 kDa (PPO-E). Activity-stained SDS polyacrylamide gel electrophoresis (PAGE) gels and western blots probed with PPO antibodies suggested the existence of a 67 kDa PPO which is susceptible to proteolytic cleavage that generates a 45 kDa active form.  相似文献   

18.
Tentoxin-induced loss of plastidic polyphenol oxidase   总被引:3,自引:0,他引:3  
Tentoxin-treated mung bean plants are shown to lack chloroplast polyphenol oxidase (PPO) by enzymatic, electrophoretic and cytochemical analysis. Incorporation of PPO (a protein coded by nuclear DNA) into the plastid may occur via concentration of the protein into inner envelope-derived vesicles. PPO integration into the plastid is apparently blocked by a tentoxin treatment although fraction I protein (and hence the proteins for chloroplast ribosome production) is not affected by this fungal toxin. Both apical and etiolated plastids from teotoxin-treated plants lack PPO. Thus, it is unlikely that the primary effect of tentoxin is due to the binding of the chloroplast coupling factor, as previously supposed.  相似文献   

19.
20.
K. C. Vaughn  S. O. Duke 《Protoplasma》1981,108(3-4):319-327
Summary Plastidic polyphenol oxidase (PPO) was localized in various plastid types ofSorghum bicolor (L.) Moench using cytochemical and biochemical franctionation techniques. PPO was found to be present in the mesophyll plastids yet absent from the bundle sheath and guard cell plastids. Mechanical fractionation of mesophyll and bundle sheath plastids, with subsequent electrophoretic or spectrophotometric assay of the preparations, also indicated that PPO was absent from the bundle sheath but present in the mesophyll fraction. A developmental study revealed that, although all leaf plastids near the basal meristem were ultrastructurally similar, the mesophyll and bundle sheath plastids were already differentiated with respect to PPO activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号