首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Simultaneous recordings were made from 3 sensory units in an easily identifiable sensillum on the 12th antennal segment ofCarausius morosus. Impulse frequency (F) of one unit rose sharply when either the temperature (T) or the partial pressure of water vapor (Pw) was suddenly lowered. F of another rose sharply either when T was suddenly lowered or Pw was raised. F of the third was hardly affected by sudden changes in T but rose abruptly when Pw fell (Fig. 1). The reactions of the first may be explained by enthalpic cooling and is considered a cold cell. Those of the second may be attributed to changes in relative humidity (Hr) and is thus termed a moist cell. The third is taken to be the latter's antagonist, a dry cell.A 90%-probability that a single moist cell of average differential sensitivity will correctly discriminate between two humidity levels is not reached until the difference between the two is 38% Hr. The dry cell requires a difference of only 7.5% (Table 1). The basis for discrimination is a single presentation of each level.The power to discriminate Hr steps is better in both cell types. For a single moist cell of average differential sensitivity the difference required between the steps for a 90%-probability of correct discrimination is only 6.3% Hr; for the dry cell, 3.5% Hr. Basis for discrimination: a single presentation of each step. Step range: 5% to 55% Hr.Abbreviations F impulse frequency in impulses per second (imp/s) - Hr orHR relative humidity in % - Ps saturation pressure of water vapor in torr - Pw partial pressure of water vapor in torr - r correlation coefficient - T temperature in °C Dedicated to Prof. Dr. F. Schaller on the occasion of his 65th birthday  相似文献   

3.
4.
Summary The cold cell in the easily identified mound-shaped sensillum on the 12th segment ofCarausius morosus' antennae responds to downward temperature (T) steps from about 15 °C with a sharp rise in impulse frequency (F). Responses to similar steps from higher initial temperatures are smaller (Figs. 1, 3, 4). As initialT increases from 16 °C to 31 °C, differential sensitivity to downward steps falls off by a factor of 27: to yield an average increase inF of 1 imp/s, steps down from 31 °C must increase by 1.7 °C; steps down from 16 °C, by only 0.06 °C (Fig. 5). Resolving power forT-steps at mid-range initial temperatures is about 0.7 °C, i.e. the probability that a single cold cell at average differential sensitivity will correctly discriminate between twoT steps 0.7 °C apart is 90% when the cell is presented with each step just once.The same cold cell also displays a clear dependence on steadyt between 14 °C and 24 °C (Figs. 7, 8). The static discharge rate of a single cell at average differential sensitivity has a resolving power of about 0.9 °C for steadyT. — The static discharge is not affected by the amount of water vapor in the stimulating air (Fig. 9).Abbreviations F impulse frequency in impulses per second (imp/s) - Pw partial pressure of water vapor in torr - r correlation coefficient - T temperature in °C - T step change inT  相似文献   

5.
A model of interleg coordination presented in a separate report is evaluated here by perturbing the step pattern in three ways. First, when the initial leg configuration is varied, the simulated leg movements assume a stable coordination from natural starting configurations in a natural way (Fig. 1a). They also rapidly re-establish the normal coordination when started from unnatural configurations (Fig. 1b-d). An explicit hierarchy of natural frequencies for the legs of the three thoracic segments is not required. Second, when the coordination is perturbed by assigning one or more legs a retraction velocity different from the rest, gliding coordination or various integer step ratios can be produced (Figs. 2–4). Third, when the swing of one leg is obstructed, characteristic changes in the stepping of other legs occur (Fig. 5). Overall differences between the step patterns of the model and those of the stick insect are related to the form of the coordinating mechanisms. Errors made by the model, such as overlapping swings by adjacent legs or discrepancies in step timing and step end-points, point out the limitations of a model restricted to kinematic parameters.  相似文献   

6.
The kinematic model presented in a separate report is used here to investigate several questions concerning the nature of the coordinating mechanisms. First, one or more mechanisms are inactivated in order to compare the relative efficiencies of the different coordinating mechanisms in maintaining proper coordination. Second, the most efficient mechanism, the position-dependent influence, is varied in order to illustrate the consequences for coordination. Third, the strength of the contralateral coupling is varied in order to make predictions about how contralateral legs establish alternation when started from symmetric positions. The consequences of adding reciprocal contralateral inhibition during swing is tested in the same context.  相似文献   

7.
Mechanisms dependent upon leg position coordinate the alternate stepping of adjacent ipsilateral and contralateral legs in the stick insect. In this insect, swing duration and step amplitude are independent of walking speed. A simple geometrical model of the leg controller is used here to test different mechanisms for compatibility with these two invariant features. Leg position is the state variable of a relaxation oscillator and position thresholds determine the transitions between swing and stance. The coordination mechanisms alter these thresholds. The position-dependent mechanisms considered differ either in the form or the speed-dependence of the function relating the shift in the posterior threshold of the receiving leg to the position of the sending leg. The results identify parameter combinations leading to alternate stepping with symmetric or asymmetric phase distributions, to shifts in the posterior extreme position as a function of speed, to double stepping or to in-phase stepping. An optimal position-dependent excitatory mechanism is described. Finally the consequences of adding either inhibitory influences or time-dependent excitatory influences are analyzed.  相似文献   

8.
9.
1.  The function of the legs of a free walking mature stick insect (Carausius morosus) is investigated in four different walking situations: walks on a horizontal path, walks on a horizontal plane, walks on a horizontal beam with the body hanging from the beam and walks up a vertical path.
2.  The geometrical data, which are necessary to describe the movement of the legs, are determined (Tables 1, 2, 3, 4; Figs. 2, 3, 4, 5).
3.  The forces, by which the leg of a free walking animal acts on the walking surface, are measured (Table 5). Typical results are shown in Figures 6, 7, 8, 9 for each walking situation. From these forces and the known geometrical relationships the torques, which are produced by the antagonistic muscle systems at each leg joint, can be calculated (Fig. 10). Those torques calculated for different typical leg positions are shown in Table 6, 7, 8, 9 for each walking situation.
4.  The results show that many things change depending upon the particular walking situation: the angular range in which the leg is moved (Table 2, Fig. 4), the activation and the kind of predominance of the antagonistic muscles (Table 6, 7, 8, 9), and especially the function of the single legs. Additionally, when looking at the direction of movement of a limb one cannot say which of the antagonistic muscles is predominating. Sometimes just the muscle opposite to the actual movement predominates (Table 7).
5.  For two walking situations the function of the legs can be demonstrated in a simple way. In a walk on the horizontal plane: the forelegs mainly have feeler function, the middlelegs have only supporting function, while the hindlegs have supporting as well as propulsive function. In a walk with the body hanging from the horizontal beam: forelegs and hindlegs are used mainly to support the body, while the middlelegs additionally provide the propulsive forces.
6.  In walking up the vertical path all legs provide support and propulsive forces. When walking on the horizontal path fore- and middlelegs on the
one hand and hindlegs on the other form the static construction of a three centered arch (Fig. 11). In the same way when the insect walks hanging from the horizontal beam, a hanging three centered arch is assumed. The importance of this construction is discussed.  相似文献   

10.
As in the preceding paper stick insects walk on a treadwheel and different legs are put on platforms fixed relative to the insect's body. The movement of the walking legs is recorded in addition to the force oscillations of the standing legs. The coordination between the different legs depends upon the number and arrangement of the walking legs and the legs standing on platforms. In most experimental situations one finds a coordination which is different from that of a normal walking animal.Supported by DFG (Cr 58/1)  相似文献   

11.
Hind legs with crossed receptor-apodemes of the femoral chordotonal organ when making a step during walking often do not release the ground after reaching the extreme posterior position. After putting a clamp on the trochanter (stimulation of the campaniform sensilla) the leg is no longer protracted during walking. However, during searching-movements the same leg is moved very far forwards. The anatomical situation of the campaniform sensilla on the trochanter and the sensory innervation of the trochanter is described. After removal of the hair-rows and continuously stimulating the hair-plate at the thorax-coxa-joint the extreme anterior and posterior positions of the leg in walking are displaced in the posterior direction. Front and middle legs operated in this way sometimes do not release the ground at the end of retraction. In searching-movements the same leg is moved in a normal way. If only one side of a decerebrated animal goes over a step, then on the other side a compensatory effect is observed. The main source of this compensatory information appears to be the BF1-hair-plates. If the animal has to drag a weight the extreme anterior and posterior positions of the middle and hind legs are displaced in the anterior direction. Crossing the receptor-apodeme of the femoral chordotonal organ, when it causes the leg to remain in the protraction phase, displaces the extreme posterior position of the ipsilateral leg in front of the operated one in the posterior direction. Influences of different sources on the extreme posterior position can superimpose. A model is presented which combines both a central programme and peripheral sensory influence. The word programme used here means that it does not only determine the motor output but also determines the reactions to particular afferences. The fact that the reaction to a stimulus depends on the internal state of the CNS is also represented by the model.Supported by Deutsche Forschungsgemeinschaft  相似文献   

12.
The following results were obtained by earlier authors when investigating the leg coordination of walking crustaceans (Decepoda): 1) After a leg is amputated, its stump moves in anti-phase with the next posterior intact leg. This corresponds to the coordination of intact animals. The stump, however, moves in-phase with the next anterior intact leg which contrasts with the coordination of intact animals (Clarac and Chasserat, 1979; Clarac, 1981). 2) Different results have been reported for the relation between the return stroke duration and step period: some authors found a significant dependency (e.g. MacMillan, 1975), others found none (e.g. Ayers and Davis, 1977). The calculation presented here shows, that these results can be described by a model incorporating the following assumptions: A) The forces developed by both, return stroke and power stroke muscles depend upon the load under which the leg walks. B) The influences which produce the coordinating effects found by Clarac and Chasserat for amputees also exist in intact animals and their strength depends upon the intensity of the motor output of the controlling leg. Within the model the selection of protraction or retraction is made at a “central unit” which calculates a value corresponding to the sum of graded inputs from several sources. The resulting fluctuation in this value might be considered analogous to graded oscillations recorded from central non-spiking interneurons. Qualitatively the model describes similar results obtained from insects.  相似文献   

13.
A computer has been used to simulate the behaviour of a model proposed to explain certain asymmetries in the free walking step patterns of adult stick insects. Complete sequences of behaviour including turns, changes in velocity, and transitions between different step patterns have been simulated and are compared with the real sequences produced by 1st instar and adult animals. The procedure for simulating the complete walking behaviour suggests that there are subtle differences in the walking system at these two stages of growth in addition to those outlined in an earlier paper. The model also provides a formal structure for expressing quantitative differences between the walking behaviour of the cockroach, locust, grasshopper, and stick insect.  相似文献   

14.
The stick insect Carausius morosus continuously moves its antennae during locomotion. Active antennal movements may reflect employment of antennae as tactile probes. Therefore, this study treats two basic aspects of the antennal motor system: First, the anatomy of antennal joints, muscles, nerves and motoneurons is described and discussed in comparison with other species. Second, the typical movement pattern of the antennae is analysed, and its spatio-temporal coordination with leg movements described. Each antenna is moved by two single-axis hinge joints. The proximal head-scape joint is controlled by two levator muscles and a three-partite depressor muscle. The distal scape-pedicel joint is controlled by an antagonistic abductor/ adductor pair. Three nerves innervate the antennal musculature, containing axons of 14-17 motoneurons, including one common inhibitor. During walking, the pattern of antennal movement is rhythmic and spatiotemporally coupled with leg movements. The antennal abduction/adduction cycle leads the protraction/retraction cycle of the ipsilateral front leg with a stable phase shift. During one abduction/adduction cycle there are typically two levation/depression cycles, however, with less strict temporal coupling than the horizontal component. Predictions of antennal contacts with square obstacles to occur before leg contacts match behavioural performance, indicating a potential role of active antennal movements in obstacle detection.  相似文献   

15.
An investigation has been made of the way, in which the height of the body of an insect (Carausius morosus) is controlled when walking over an uneven terrain. The animals have been filmed from the side while walking over different types of irregularity (step up, step down, obstacle, ditch). A frame by frame analysis of the height of the three thoracic segments of the insect has been performed. A computer model has been set up, which is able to describe the experimental results within the exactness of measurement. This model consists of three independent height controllers, each having a unique characteristic. The coupling of these three controllers is performed mechanically. One possible interpretation of this model is that the height of each segment is controlled by a closed loop mechanism with a proportional element as a controller.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

16.
ABSTRACT. Using a preparation of the stick insect it is possible to record activity from the neuropile of the mesotheoracic ganglion during sequences of walking behaviour lasting several minutes. The animal walks on two lightweight wheels, counterbalanced to give an upthrust of 0.4 g against the legs. Each wheel may be rotated independently during turning behaviour. The walking behaviour of the operated preparation is compared with the results obtained for free-walking animals, and intact or partially operated preparations, walking on heavier wheels and mercury. Records from several identified retractor motor neurones show the stability and reproducibility obtainable with this preparation.  相似文献   

17.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

18.
The biomechanical conditions for walking in the stick insect require a modeling approach that is based on the control of pairs of antagonistic motoneuron (MN) pools for each leg joint by independent central pattern generators (CPGs). Each CPG controls a pair of antagonistic MN pools. Furthermore, specific sensory feedback signals play an important role in the control of single leg movement and in the generation of inter-leg coordination or the interplay between both tasks. Currently, however, no mathematical model exists that provides a theoretical approach to understanding the generation of coordinated locomotion in such a multi-legged locomotor system. In the present study, I created such a theoretical model for the stick insect walking system, which describes the MN activity of a single forward stepping middle leg and helps to explain the neuronal mechanisms underlying coordinating information transfer between ipsilateral legs. In this model, CPGs that belong to the same leg, as well as those belonging to different legs, are connected by specific sensory feedback pathways that convey information about movements and forces generated during locomotion. The model emphasizes the importance of sensory feedback, which is used by the central nervous system to enhance weak excitatory and inhibitory synaptic connections from front to rear between the three thorax-coxa-joint CPGs. Thereby the sensory feedback activates caudal pattern generation networks and helps to coordinate leg movements by generating in-phase and out-of-phase thoracic MN activity.  相似文献   

19.
20.
Animals (Cuniculina impigra) possessing only one foreleg with restrained coxa perform very stereotyped searching movements during which the movements of the femur-tibia and coxa-trochanter joints are well coordinated. After ablation of either hairfield BF1 (measuring the position of the coxa-trochanter joint) or the apodeme of the femoral chordotonal organ (measuring the position of the femur-tibia joint) each joint can still be moved but the coordination changes and becomes very labile. The consequences for the ideas about the construction principles of the pattern generator for searching movements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号