首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of pancreatic polypeptide and peptide YY   总被引:12,自引:0,他引:12  
Ekblad E  Sundler F 《Peptides》2002,23(2):251-261
The cellular distribution of PP and PYY in mammals is reviewed. Expression of PP is restricted to endocrine cells mainly present in the pancreas predominantly in the duodenal portion (head) but also found in small numbers in the gastro-intestinal tract. PYY has a dual expression in both endocrine cells and neurons. PYY expressing endocrine cells occur all along the gastrointestinal tract and are frequent in the distal portion. Islet cells expressing PYY are found in many species. In rodents they predominate in the splenic portion (tail) of the pancreas. A limited expression of PYY is found also in endocrine cells in the adrenal gland, respiratory tract and pituitary. Peripheral, particularly enteric, neurons also express PYY as does a restricted set of central neurons.  相似文献   

2.
Many peptides are synthesized and released from the gastrointestinal tract and pancreas, including pancreatic polypeptide (PP) and the products of the gastrointestinal L cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY). Whereas their roles in regulation of gastrointestinal function have been known for some time, it is now evident that they also influence eating behavior. This review considers the anorectic peptides PYY, PP, GLP-1, and oxyntomodulin, which decrease appetite and promote satiety in both animal models and humans.  相似文献   

3.
Pancreatic polypeptide (PP), peptide YY (PYY) and neuropeptide Y (NPY), members of the PP-fold family share a high degree of sequence homology. Nuclear magnetic resonance (NMR) and X-ray crystallography studies have shown these peptides can adopt a tightly organized tertiary structure called the PP-fold, which has long been assumed to be the active structure of this family of peptides. To date, however, no studies have been completed with PYY and PP which confirm if the PP-fold structure is important for their physiological actions. The aim of the study was to test if PYY and PP locked into the PP-fold maintained biological activity. Therefore, we designed and produced analogs of PP and PYY in a cyclic conformation with two cysteine amino acid substitutions at the N-terminus and at position 27. These were oxidized to form a cysteine disulfide bond locking the peptides into the PP-fold structure. Studies demonstrate that the cyclic analogs have both similar in vivo activity to their parent molecules, and affinity for the Y2 and Y4 receptors. Results suggest that the proposed PP and PYY-fold is likely to be their biologically active conformation.  相似文献   

4.
Conlon JM 《Peptides》2002,23(2):269-278
It is generally accepted that the neuropeptide Y (NPY) family of homologous peptides arose as a result of a series of gene duplication events. Recent advances in comparative genomics allow to formulate a hypothesis that explains, at least in part, the complexity of the family. Chromosome mapping studies reveal that the gene encoding PYY may have arisen from a common ancestral gene (termed NYY) in an ancient chromosomal duplication event that also involved the hox gene clusters. A tandem duplication of the PYY gene concomitant with or just before the emergence of tetrapods generated the PPY gene encoding PP. In the primate and ungulate lineages, the PYY-PPY gene cluster has undergone a more recent gene duplication event to create a PYY2-PPY2 gene cluster on the same chromosome. In the human and baboon, this cluster probably does not encode functional NPY family peptides but expression of the bovine PYY2 gene generates seminalplasmin, a major biologically active component of bull semen. An independent duplication of the PYY gene in the lineage of teleost fish has generated peptides of the PY family that are synthesized in the pancreatic islets of Acanthomorpha. The structural organization of the biosynthetic precursors of PYY and PP (preproPYY and preproPP) has been quite well preserved during the evolution of vertebrates but conservative pressure on individual domains in the proteins has not been uniform. The duplication of the PYY gene that generated the PPY gene appears to have resulted in a relaxation of conservative pressure on the functional domain with the result that the amino acid sequences of tetrapod PYYs are more variable than the PYYs of jawed fish. Although the primary structure of PP has been quite strongly conserved in mammals, with the exception of the rodents, the extreme variability in the sequences of amphibian and reptilian PPs means that the peptide is a useful molecular marker to study the branching order in early tetrapod evolution  相似文献   

5.
The present status of our understanding of the feedback regulation of pancreatic secretion by peptide YY (PYY) released from the distal intestine is reviewed. Exocrine pancreatic secretion is primarily controlled by the cephalic (the vagus nerve), gastric (acid and pepsin secretion, and nutrients delivered into the duodenum by gastric emptying), and intestinal (secretin and CCK) mechanisms. PYY acts on the multiple sites in the brain and gut, and inhibits pancreatic secretion by regulating these primary control mechanisms. The involvement of Y(1) and Y(2) receptors has been suggested in the regulation of pancreatic secretion. However, it remains to be studied which site of action or receptor subtype is physiologically most important for this regulation.  相似文献   

6.
Summary Cells storing pancreatic polypeptide (PP) appear in rat pancreas at the time of parturition, much later than insulin and glucagon cells. At this stage, the pancreatic polypeptide (PP) cells occur scattered in the exocrine parenchyma and in the islets. Subsequently, 5–7 days postnatally, an abrupt increase in the number of PP cells occurs. At this stage, they are fairly numerous in the islets and comparatively rare in the exocrine parenchyma. Not until 8–10 days after birth is the number of PP cells similar to that in the adult pancreas. A few PP cells were seen in the antral mucosa during the first 10 days after birth. They were not seen elsewhere in the gut.  相似文献   

7.
The regional distribution and relative frequency of peptide YY (PYY)-, pancreatic polypeptide (PP)-, and glucagon-like peptide 1 (GLP-1)-immunoreactive (IR) cells were determined immunohistochemically in the gastrointestinal tract at seven ontogenetic stages in pre- and postnatal cattle. Different frequencies of PYY-, PP-, and GLP-1-IR cells were found in the intestines at all stages; they were not found in the esophagus and stomach. The frequencies varied depending on the intestinal segment and the developmental stage. The frequencies of PYY- and PP-IR cells were lower in the small intestine and increased from ileum to rectum, whereas GLP-1-IR cells were more numerous in duodenum and jejunum, decreased in ileum and cecum, and increased again in colon and rectum. The frequencies also varied according to pre- and postnatal stages. All three cell types were most numerous in fetus, and decreased in calf and adult groups, indicating that the frequencies of these three types of endocrine cells decrease with postnatal development. The results suggest that these changes vary depending on feeding habits and adaptation of growth, secretion, and motility of intestine at different ontogenetic stages of cattle.  相似文献   

8.
Stimulation of cholecystokinin and glucagon-like peptide-1 secretion by fat is mediated by the products of fat digestion. Ghrelin, peptide YY (PYY), and pancreatic polypeptide (PP) appear to play an important role in appetite regulation, and their release is modulated by food ingestion, including fat. It is unknown whether fat digestion is a prerequisite for their suppression (ghrelin) or release (PYY, PP). Moreover, it is not known whether small intestinal exposure to fat is sufficient to suppress ghrelin secretion. Our study aimed to resolve these issues. Sixteen healthy young males received, on two separate occasions, 120-min intraduodenal infusions of a long-chain triglyceride emulsion (2.8 kcal/min) 1) without (condition FAT) or 2) with (FAT-THL) 120 mg of tetrahydrolipstatin (THL, lipase inhibitor), followed by a standard buffet-style meal. Blood samples for ghrelin, PYY, and PP were taken throughout. FAT infusion was associated with a marked, and progressive, suppression of plasma ghrelin from t = 60 min (P < 0.001) and stimulation of PYY from t = 30 min (P < 0.01). FAT infusion also stimulated plasma PP (P < or = 0.01), and the release was immediate. FAT-THL completely abolished the FAT-induced changes in ghrelin, PYY, and PP. In response to the meal, plasma ghrelin was further suppressed, and PYY and PP stimulated, during both FAT and FAT-THL infusions. In conclusion, in healthy humans, 1) the presence of fat in the small intestine suppresses ghrelin secretion, and 2) fat-induced suppression of ghrelin and stimulation of PYY and PP is dependent on fat digestion.  相似文献   

9.
By affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, we identified a novel cell surface receptor on intact rat cells, which bound, with similar dissociation constants, pancreatic polypeptide (PP), neuropeptide Y (NPY) and peptide YY (PYY), the members of the PP family. The receptor was detected on pancreatic islet and acinar cells, hepatocytes and epithelial cells of the stomach, duodenum and small intestine. Its molecular weight was estimated to be 65,000, and the cross-linking of [125I] labeled ligands was inhibited by an excess of unlabeled PP, NPY or PYY. The results suggest that the 65-kDa molecule is a common receptor for PP family peptides.  相似文献   

10.
11.
Spinal and peripheral modulation of pentagastrin-stimulated gastric acid secretion by the pancreatic polypeptide-fold (PP-fold) peptides, neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), in urethane-anesthetized rats was evaluated. Neuropeptide Y, PYY, and PP (400 pmol) were administered via intravenous (IV) and intrathecal (IT) injections. The 2 antagonist, yohimbine, was used to evaluate the role of the 2 adrenergic receptors in the modulation of pentagastrin-stimulated gastric acid secretion by NPY, PYY, and PP. Peptide YY and PP (IV) rapidly increased pentagastrin-stimulated gastric acid secretion. Peptide YY and PP (IT) increased pentagastrin-stimulated gastric acid secretion following administration into the thoracic (T8–T10) region of the spinal cord. The 2 adrenergic receptor antagonist, yohimbine, did not modify the increases in pentagastrin-stimulated gastric acid secretion following PYY and PP (IV or IT) administration. Neuropeptide Y (IT) decreased pentagastrin-stimulated gastric acid secretion. However, in the presence of 2 adrenergic receptor blockade, pentagastrin-stimulated gastric acid secretion was potentiated by NPY (IT) administration. Therefore, the inhibitory effect of NPY (IT) on pentagastrin-stimulated gastric acid secretion required the activation of 2 adrenergic receptors in the spinal cord of rats. Mean arterial blood pressure (MAP) was increased immediately following NPY and PYY (IV) administration. During the same time period, PP (IV) decreased MAP in anesthetized rats. Mean arterial blood pressure was rapidly increased by NPY and PYY (IT) in anesthetized rats. The increase in MAP following PYY (IT) was partially attenuated in the presence of yohimbine. The modulation of MAP and gastric acid secretion by the PP-fold peptides occurred by independent mechanisms at spinal and peripheral sites in the rat. The modulation of pentagastrin-stimulated gastric acid secretion by PYY and PP in rats differed from that of the third member of the PP-fold family, NPY, following spinal and peripheral administration.  相似文献   

12.
Neuropeptide Y, PYY, and PP (200 pmol) alter intraluminal pressure in the duodenum and colon of rats following their administration into the thoracic (T8-T10) region of the spinal cord. Neuropeptide Y decreases the tone of the duodenum and the colon following intrathecal (T8-T10) administration prior to an increase in tone to baseline or greater. There is no effect on intraluminal pressure of either the duodenum or the colon following intrathecal administration of NPY or PP into the lumbar (L4-L5) region of the spinal cord. Following intrathecal (T8-T10) administration of PYY and PP, increases in intraduodenal pressures are observed (+2.1 and +3.0 mmHg from saline baseline). Phasic contractions of the duodenum are increased following intrathecal administration of PYY into the thoracic spinal cord of rats. Neuropeptide Y, PYY, and PP increase intracolonic pressure +2.2, +3.3, and +3.7 mmHg from saline baseline, respectively. Phasic contractions of the colon are increased following PP intrathecal thoracic administration. Responsiveness of the duodenum or colon to the different ligands of the PP-fold peptide family in the absence of alpha-adrenergic blockade did not vary. The increases in intraluminal pressure of the duodenum and colon following intrathecal administration of the PP-fold peptides are attenuated by both alpha-1 adrenergic (prazosin) and alpha-2 adrenergic (yohimbine) blockade. There is a difference in responsiveness of the colon between the ligands of the PP-fold family in the presence of the alpha-2 adrenergic blockade. The findings of this study indicate that duodenal and colonic motility are modulated by the PP-fold peptides at thoracic spinal sites via alteration of sympathetic outflow.  相似文献   

13.
Summary The distribution of the polypeptide which has an N-terminal tyrosine and a C-terminal tyrosine (PYY)- and pancreatic polypeptide (PP)-immunoreactive cells were investigated in the gut of the domestic fowl. PYY-immunoreactive cells were observed in the duodenum and jejunum. PP-immunoreactive cells were seen in the duodenum, jejunum, ileum and colon. Both PYY- and PP-immunoreactive cells were extended from the basal lamina to the gut lumen i.e. of open type. PYY-immunoreactive cells occurred mainly in the basal and middle portion of the villi. On the other hand, PP-immunoreactive cells were located mostly in the crepts. The occurrence of PYY-immunoreactive cells in the upper part of the small intestine is rather similar to that of amphibians and reptiles, than to that of mammals, where PYY-immunoreactive cells are located in the distal part of the small intestine and in the large intestine.Preliminary results were given in abstract form in the 4th International Symposium on Gastrointestinal Hormones, held in Stockholm, June 20–23, 1982  相似文献   

14.
In this work we have investigated the effect of somatostatin on the secretion of human pancreatic polypeptide (HPP). In a group of five gastrectomized patients, somatostatin infusion induced a significant decline of fasting HPP plasma levels and completely abolished HPP response to oral glucose. Upon somatostatin withdrawal, HPP concentrations returned to pre-experimental values. These data add a new hormone to the list of those inhibited by somatostatin.  相似文献   

15.
Summary The distribution and ontogeny of polypeptide YY (PYY)-and pancreatic polypeptide (PP)-immunoreactive cells in the gastrointestinal tract of rat were investigated. PYY-immunoreactive cells were numerous in the pylorus, ileum and colon and only a few cells were observed in the corpus, duodenum, jejunum and rectum. On the other hand, a few PP-immunoreactive cells were seen in the colon only. Both PYY-and PP-immunoreactive cells were of the open type, i.e., they extended from the basal lamina to the gut lumen. PYY-immunoreactive cells were observed first in the lower half of the stomach and in the intestine of 19 day-old embryo. The localization of the cells seemed to move along towards the pylorus and the lower part of the intestine. PP-immunoreactive cells could only be detected for the first time in the colon of 2 day-old rat. These cells appeared temporarily in the pylorus and rectum during the period 7 to 21 days after birth. It was concluded that the difference between PYY-and PP-immunoreactive cells in the distribution, frequency and ontogeny provide further evidence that PYY and PP occur in two independent cell types.  相似文献   

16.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone (PP) and somatostatin were used in the immunofluorescence histochemical procedure to study the ontogeny of pancreatic endocrine cells containing the four hormones in the bovine fetus of approximately 100 days gestation to term. Pancreatic sections from the bovine neonate and adult were also examined for the cellular distribution of the four hormones. Immunoreactive cells staining for insulin, glucagon, PP and somatostatin were present in the pancreas of all fetuses studied. Each endocrine cell type displayed a characteristic distribution within the developing pancreas and in the neonate and adult. The presence of the four islet hormones relatively early in bovine fetal life suggests that they may be important in intra- and extra-islet metabolism in the fetus.  相似文献   

17.
The effects of 1-h infusions of bombesin and gastrin releasing peptide (GRP) at 50 pmol/kg per h and neurotensin at 100 pmol/kg per h on gastrin, pancreatic polypeptide (PP) and neurotensin release in man were determined following either saline or atropine infusion (20 micrograms/kg). Bombesin produced a rise in plasma neurotensin from 32 +/- 6 to 61 +/- 19 pmol/l and of PP from 26 +/- 8 to 36 +/- 7 pmol/l. There was a further rise of plasma PP to 50 +/- 13 pmol/l after cessation of the infusion. GRP had no significant effect on plasma neurotensin, but compared to bombesin, produced a significantly greater rise in plasma PP from 34 +/- 6 to 66 +/- 19 pmol/l during infusion. There was no post-infusional increase. At this dose, GRP was as effective as bombesin in releasing gastrin, although unlike bombesin its effect was enhanced by atropine. Neurotensin produced a rise in plasma PP from 17 +/- 4 to 38 +/- 8 pmol/l. Atropine blocked the release of PP during GRP and neurotensin infusion. Atropine had no effect on neurotensin or PP release during bombesin infusion, but did block the rise in plasma PP following bombesin infusion. We conclude that, in contrast to meal-stimulated neurotensin release, bombesin-stimulated neurotensin release is cholinergic independent. Despite structural homology, bombesin and GRP at the dose used are dissimilar in man in their actions and sensitivity to cholinergic blockade.  相似文献   

18.
The processing of the common precursor for pancreatic polypeptide and pancreatic icosapeptide was studied in primary cultures of endocrine cells isolated from the duodenal part of the canine pancreas. Biosynthetically labeled peptides were characterized by enzymatic digestion and radiosequencing and compared to a COOH-terminally extended form of the icosapeptide which was isolated from canine pancreas and also sequenced. It was substantiated that, in these cell cultures, processing can be studied at a classical dibasic site between the pancreatic polypeptide and the icosapeptide, and at a monobasic processing site between the icosapeptide and its COOH-terminal extension. Pulse-chase experiments showed that the monobasic cleavage occurs later than the dibasic one in the biosynthetic process; the monobasic site was apparently not cleaved before the prohormone had been processed at the dibasic site. The monobasic processing could also be distinguished from the dibasic cleavage mechanism as, in time, the cells gradually lost the ability to cleave at the monobasic site while the dibasic processing was unaffected. It is concluded that monobasic conversion, which is important in the activation of a series of hormones, neuropeptides, and growth factors, is a distinct cellular processing mechanism.  相似文献   

19.
In the present work we have examined the effect of i.v. calcium administration on the secretion of human pancreatic polypeptide (hPP) in normal subjects. The infusion of calcium glucono-galactono-gluconate, as to deliver 10 mg of calcium element per kilogram of body weight in two hours, was followed by a progressive elevation of plasma hPP which attained values two-fold those of the basal levels. This finding demonstrates that calcium behaves as a pancreatic polypeptide secretagogue in man.  相似文献   

20.
We have investigated the effect of galanin infusion on unstimulated pancreatic polypeptide (PP) release as well as on the PP response to arginine by the perfused rat pancreas. Galanin significantly reduced unstimulated PP output. Addition of arginine to the perfusate evoked a biphasic pattern of PP release; the second phase of this PP response was delayed when galanin was simultaneously infused. These findings point to a regulatory role of galanin in the control of PP secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号