首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specificity of gap junction formation produces communication compartments, groups of cells joined to each other by gap junctions (homologous communication) but more rarely to cells in adjacent compartments (heterologous communication). Specificity of junction formation can be studied in mixed cultures of different cell types. In these model systems, compartmentation is often associated with sorting out, a process that produces separate domains of the different cells. The borders of the physically distinct domains correlate with the functional boundaries of the communication compartments. Compartments have also been observedin vivowhere they are believed to play a role in separating groups of cells following different differentiation pathways. Two classes of cell surface molecule, connexins and cell adhesion molecules, are candidates for a role in the control of specificity. A representative of each class appears to be necessary for gap junction formation and both are expressed in a tissue specific manner. We have shown that mixed cultures of rat epithelial (BRL) cells and rat (BICR) fibroblasts show specificity, form communication compartments and sort out. Both cell types express the same connexin (connexin 43) but different cell adhesion molecules (BRL, P-cadherin and 125-kDa N-cadherin; BICR, 140-kDa N-cadherin). Transfection of both cell types with E-cadherin results in a 10-fold increase in heterologous communication. These data suggest that E-cadherin plays a role in the control of specificity of gap junction formation.  相似文献   

2.
Summary Patterns of gap junctional communication in the ectoderm of embryos of Patella vulgata have been studied by intracellular injection of the fluorescent dye Lucifer Yellow, and by analysis of its subsequent spread to adjacent cells (dye-coupling). We found that dye-coupling became progressively restricted to different domains of the ectoderm, forming communication compartments. These communication compartments are characterized by their high coupling abilities within the compartment, and reduction of coupling across their boundaries. During development, the pretrochal (anterior) ectoderm becomes subdivided into two communication compartments, the apical organ and the anlage of the head ectoderm. The posttrochal (posterior) ectoderm becomes subdivided into different communication compartments in two successive phases. Firstly, in the 15-h embryo the dorsal and ventral domains of the ectoderm form separate communication compartments. A dorso-ventral communication boundary restricts the passage of dye between the two domains. Secondly, in the 24-h embryo dye-coupling becomes further compartmentalized in both the dorsal and ventral domains. These compartments correspond to the anlagen of different ectodermal structures. In order to study whether any level of coupling persists between the ectodermal compartments we injected currents through a microelectrode inserted into one cell of one compartment and monitored its spread by means of a second microelectrode inserted into one cell of another compartment (electrical coupling). Despite the absence of dye-coupling, electrical coupling between the ectodermal dye-coupling compartments was detected, which suggests that some level of communication is maintained between compartments. Our results demonstrate that within the ectoderm layer of Patella vulgata the transfer of dyes becomes progressively restricted to communication compartments and, concomitantly with the specification of the different ectodermal anlagen, these compartments become subdivided into smaller communication compartments.  相似文献   

3.
Our previous studies have suggested that all the known lineage compartment borders in the wing imaginal disc of Drosophila are coincident with boundaries of reduced gap junctional communication (communication compartment borders). Since engrailed discs have a disrupted anterior/posterior (A/P) lineage border (G. Morata and P. A. Lawrence, 1975, Nature (London) 255, 614-617), it was of great interest to determine if their A/P communication restriction boundary is similarly disrupted. Examination of gap-junction-mediated exchange of small fluorescent molecules between cells in the engrailed wing disc revealed a boundary of restricted communication that appeared to be identical to the wild-type A/P communication restriction boundary. This result suggests that lineage compartments are not required for the formation of A/P communication restrictions. Furthermore, we suggest that perhaps communication compartments are the domains within which information is provided for specifying the formation of lineage compartments.  相似文献   

4.
Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.  相似文献   

5.
Gap junctions serve as intercellular conduits that allow the exchange of small molecular weight molecules (up to 1 kDa) including ions, metabolic precursors and second messengers. Microglia are capable of recognizing peptidoglycan (PGN) derived from the outer cell wall of Staphylococcus aureus, a prevalent CNS pathogen, and respond with the robust elaboration of numerous pro-inflammatory mediators. Based on recent reports demonstrating the ability of tumor necrosis factor-alpha and interferon-gamma to induce gap junction coupling in macrophages and microglia, it is possible that pro-inflammatory mediators released from PGN-activated microglia are capable of inducing microglial gap junction communication. In this study, we examined the effects of S. aureus-derived PGN on Cx43, the major connexin in microglial gap junction channels, and functional gap junction communication using single-cell microinjections of Lucifer yellow (LY). Exposure of primary mouse microglia to PGN led to a significant increase in Cx43 mRNA and protein expression. LY microinjection studies revealed that PGN-treated microglia were functionally coupled via gap junctions, the specificity of which was confirmed by the reversal of activation-induced dye coupling by the gap junction blocker 18-alpha-glycyrrhetinic acid. In contrast to PGN-activated microglia, unstimulated cells consistently failed to exhibit LY dye coupling. These results indicate that PGN stimulation can induce the formation of a functional microglial syncytium, suggesting that these cells may be capable of influencing neuro-inflammatory responses in the context of CNS bacterial infections through gap junction intercellular communication.  相似文献   

6.
Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.  相似文献   

7.
Dhein S 《Peptides》2002,23(9):1701-1709
Gap junction channels are low resistance pathways allowing an action potential to propagate from one cell to the neighboring. Moreover, small molecules (<1000 Da) may pass the channel providing a possibility for metabolic coupling, growth and differentiation control of a cell by its surrounding. Antiarrhythmic peptides can enhance the conductivity of the channels while other peptides, angiotensin or extracellular loop peptides, reduce intercellular communication. On the other hand, peptides like angiotensin II or endothelin-1 can increase expression of certain gap junction channel proteins and, thereby, may affect intercellular coupling chronically. Thus, intercellular communication can be controlled using peptide drugs.  相似文献   

8.
Versican is a large chondroitin sulfate proteoglycan and belongs to the family of lecticans. Versican possesses two globular domains, G1 and G3 domain, separated by a CS-attachment region. The CS-attachment region present in the middle region is divided into two spliced domains named CSalpha and beta. Alternative splicing of versican generates at least four versican isoforms named V0, V1, V2, and V3. We have successfully cloned the full-length cDNA of chick versican isoforms V1 and V2 and found that versican isoform V1 induced mesenchymal-epithelial transition in NIH3T3 cells. Mesenchymal-epithelial transition induced by V1 in NIH3T3 cells is characterized by expression of E-cadherin and occludin, two epithelial markers, and reduced expression of fibroblastic marker vimentin (Sheng et al., 2006, Mol Biol Cell. 17, 2009-2020). In the present studies, we found that versican V1 isoform not only induced cell transition, but also increased intercellular communication via gap junction channels composed of connexin proteins. Our results showed that V1 induces plasma membrane localization of connexin 43, resulting in increased cell communication. This was further confirmed by blocking assays. Gap junctions mediated the transfer of small cytoplasmic molecules and the diffusion of second messenger molecules between adjacent cells. The ability of versican in regulating gap junction implied a potential role of versican in coordinating functions.  相似文献   

9.
In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent1,2. In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue.Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions3,4. Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling3-8. For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation7,8. However, not only are these studies extremely difficult to perform on neurons with small somata in intact neural retinal tissue, but it can be difficult to adequately control the illumination conditions during the electrophysiological study of single retinal neurons to avoid light-induced changes in gap junction conductance.Here, we present a straightforward method of determining the extent of gap junction tracer coupling between retinal neurons under different illumination conditions and at different times of the day and night. This cut-loading technique is a modification of scrape loading9-12, which is based on dye loading and diffusion through open gap junction channels. Scrape loading works well in cultured cells, but not in thick slices such as intact retinas. The cut-loading technique has been used to study photoreceptor coupling in intact fish and mammalian retinas7, 8,13, and can be used to study coupling between other retinal neurons, as described here.  相似文献   

10.
Observations on hair follicles presented in this paper show that boundaries to junctional communication are formed between groups of cells following different pathways of differentiation. The patterns of junctional communication in the bulbs of rat vibrissa follicles and human hair follicles were studied by microinjection of the fluorescent tracer dye Lucifer Yellow CH. Dye spread was extensive between undifferentiated cells of the hair bulb matrix but communication boundaries were found between groups of morphologically distinct cells. For example, boundaries to dye spread were observed between undifferentiated matrix cells and cells in the early stage of differentiation into the inner root sheath, between Huxley's and Henle's layers in the early inner root sheath and between cells of the cuticle and cortex of the hair. Dye did not spread between epithelial cells of the hair bulb and mesenchymal cells of the connective tissue sheath or dermal papilla. The patterns of dye spread became more complex (increased boundary formation and subcompartmentation) as differentiation progressed in higher regions of the hair bulb. The observed communication can be related to previous ultrastructural studies by others on the distribution of gap junctions in the wool follicle. These results show that junctional communication, with its consequent intercellular spread of small ions and molecules, is associated with uniformity of expression and behaviour within cell populations and that interruption of communication through the formation of boundaries and communication compartments is temporally and spatially related to the production of subpopulations of cells committed to the expression of different phenotypes.  相似文献   

11.
Dakin K  Zhao Y  Li WH 《Nature methods》2005,2(1):55-62
Using a new class of photo-activatible fluorophores, we have developed a new imaging technique for measuring molecular transfer rates across gap junction connexin channels in intact living cells. This technique, named LAMP, involves local activation of a molecular fluorescent probe, NPE-HCCC2/AM, to optically label a cell. Subsequent dye transfer through gap junctions from labeled to unlabeled cells was quantified by fluorescence microscopy. Additional uncagings after prior dye transfers reached equilibrium enabled multiple measurements of dye transfer rates in the same coupled cell pair. Measurements in the same cell pair minimized variation due to differences in cell volume and number of gap junctions, allowing us to track acute changes in gap junction permeability. We applied the technique to study the regulation of gap junction coupling by intracellular Ca(2+) ([Ca(2+)](i)). Although agonist or ionomycin exposure can raise bulk [Ca(2+)](i) to levels higher than those caused by capacitative Ca(2+) influx, the LAMP assay revealed that only Ca(2+) influx through the plasma membrane store-operated Ca(2+) channels strongly reduced gap junction coupling. The noninvasive and quantitative nature of this imaging technique should facilitate future investigations of the dynamic regulation of gap junction communication.  相似文献   

12.
Tight junction barrier formation and gap junctional communication are two functions directly attributable to cell-cell contact sites. Epithelial and endothelial tight junctions are critical elements of the permeability barrier required to maintain discrete compartments in the lung. On the other hand, gap junctions enable a tissue to act as a cohesive unit by permitting metabolic coupling and enabling the direct transmission of small cytosolic signaling molecules from one cell to another. These components do not act in isolation since other junctional elements, such as adherens junctions, help regulate barrier function and gap junctional communication. Some fundamental elements related to regulation of pulmonary barrier function and gap junctional communication were presented in a Featured Topic session at the 2004 Experimental Biology Conference in Washington, DC, and are reviewed in this summary.  相似文献   

13.
The tight junction of epithelial cells excludes macromolecules but allows permeation of ions. However, it is not clear whether this ion-conducting property is mediated by aqueous pores or by ion channels. To investigate the permeability properties of the tight junction, we have developed paracellular ion flux assays for four major extracellular ions, Na(+), Cl(-), Ca(2+), and Mg(2+). We found that the tight junction shares biophysical properties with conventional ion channels, including size and charge selectivity, dependency of permeability on ion concentration, competition between permeant molecules, anomalous mole-fraction effects, and sensitivity to pH. Our results support the hypothesis that discrete ion channels are present at the tight junction. Unlike conventional ion channels, which mediate ion transport across lipid bilayers, the tight junction channels must orient parallel to the plane of the plasma membranes to support paracellular ion movements. This new class of paracellular-tight junction channels (PTJC) facilitates the transport of ions between separate extracellular compartments.  相似文献   

14.
15.
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

16.
Milán M  Cohen SM 《Molecular cell》1999,4(6):1073-1078
The developing limbs of Drosophila are subdivided into distinct cells populations known as compartments. Short-range interaction between cells in adjacent compartments induces expression of signaling molecules at the compartment boundaries. In addition to serving as the sources of long-range signals, compartment boundaries prevent mixing of the adjacent cell populations. One model for boundary formation proposes that affinity differences between compartments are defined autonomously as one aspect of compartment-specific cell identity. An alternative is that the affinity boundary depends on signaling between compartments. Here, we present evidence that the dorsal selector gene apterous plays a role in establishing the dorsoventral affinity boundary that is independent of Notch-mediated signaling between dorsal and ventral cells.  相似文献   

17.
In early embryos of molluscs, different clones of successively determined trochoblasts differentiate into prototroch cells and together contribute to the formation of a ciliated ring of cells known as the prototroch. Trochoblasts differentiate after cell cycle arrest, which occurs two cell cycles after the commitment of their stem cell. To study the changes of junctional communication in embryos of Patella vulgata in relation to commitment, cell cycle arrest, and differentiation of the trochoblasts, we have monitored electrical coupling as well as transfer of fluorescent dyes. The appearance of dye coupling in embryos of Patella occurs after the fifth cleavage (at the 32-cell stage), when the cell cycles of all embryonic cells become asynchronous and longer. At the 32- and 64-cell stages all cells are well coupled. However, after the 72-cell stage dye transfer to or from any cell of the four interradial clones of four primary trochoblasts becomes abruptly reduced, whereas electrical coupling between these cells and the rest of the embryo can still be detected. From scanning electron microscopical analysis of the cell pattern we conclude that this change in gap junctional communication coincides with cell cycle arrest and with the development of cilia in all four clones of primary trochoblasts. Similarly, after the 88-cell stage the four radial clones of accessory trochoblasts stop dividing, reduce cell coupling, and become ciliated. By the formation of the prototroch, the embryo becomes subdivided into an anterior (pretrochal) and a posterior (posttrochal) domain which will develop different structures of the adult. At the 88-cell stage, the cells within each of these two domains remain well coupled and form two different communication compartments that are separated from each other by the interposed ring of uncoupled trochoblasts. The relations among control of cell cycle, changes in junctional communication, and differentiation are discussed.  相似文献   

18.
Pathways and control of connexin oligomerization   总被引:6,自引:0,他引:6  
Connexins form gap junction channels that link neighboring cells into an intercellular communication network. Many cells that express multiple connexins produce heteromeric channels containing at least two connexins, which provides a means to fine tune gap junctional communication. Formation of channels by multiple connexins is controlled at two levels: by inherent structural compatibilities that enable connexins to hetero-oligomerize and by cellular mechanisms that restrict the formation of heteromers by otherwise compatible connexins. Here, I discuss roles for secretory compartments beyond the endoplasmic reticulum in connexin oligomerization and evidence that suggests that membrane microdomains help regulate connexin trafficking and assembly.  相似文献   

19.
Is a mosaic embryo also a mosaic of communication compartments?   总被引:2,自引:0,他引:2  
We have studied the pathways of cell communication in embryos of the mollusc Lymnaea stagnalis in which the developmental fate of a cell or a group of cells is known from cell lineage studies. We iontophoretically injected Lucifer Yellow CH and followed the spread of fluorescence between cells interconnected via gap junctions. In early stages all blastomeres appear to be dye-coupled, but later on communication is restricted within compartments. The pattern of cell communication corresponds with the development of compartments with specific cell fates. Dye-spread is limited by communication boundaries which completely or mostly prevent the passage of dye to adjacent compartments with different developmental fates. These boundaries appear progressively during development. Our results suggest that, during the development of Lymnaea, the progressive changes in the pattern of dye spread correspond with the progressive restrictions of the developmental fates of individual cells or groups of cells. We conclude that changes in the pattern of cell communication and in the appearance of communication compartments are not exclusive features of regulative embryos.  相似文献   

20.
Connexins, the family of proteins that form vertebrate gap junctions, have key roles during development and in the adult. Previously, the physiological actions of connexins have been ascribed solely to formation of gap junction channels and thought to be mediated by the transfer of small molecules between neighboring cells. In conflict with this hypothesis here we demonstrate that Cx43 can affect cell growth independently of gap junction formation. This conclusion is based on four findings: (1) There is a lack of correlation between the action of Cx43 mutants Cx43-S255A, Cx43-S279A, and Cx43-S282A on growth and cell coupling in 3T3 A31 fibroblasts. (2) Blockade of gap junction formation, by either heptan-1-ol treatment or culturing cells at low density, had no effect on the ability of the Cx43 mutants to control growth. (3) Wildtype Cx43 inhibited growth of Neuro2a cells under conditions where gap junctions were unable to form. (4) The CT domain of Cx43, which lacks intrinsic gap junction activity, is as effective as the wildtype molecule in suppressing the growth of Neuro2a cells. These observations demonstrate that Cx43 has dual functions: first, its well-accepted role in forming a gap junction channel and, second, a direct action of the connexin protein on growth that is mediated via the cytoplasmic carboxyl domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号