首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor for alpha 2-macroglobulin-proteinase complexes (alpha 2MR) was purified recently, and its binding of ligand was shown to depend on calcium ions (Moestrup, S. K., and Gliemann, J. (1989) J. Biol. Chem. 264, 15574-15577). This paper shows that the 440-kDa human placental alpha 2MR is a cysteine-rich glycoprotein with high affinity calcium binding sites important for receptor conformation; and the relationship between Ca2+ concentration and receptor function is presented. Autoradiography showed 45Ca2+ binding to the 440-kDa alpha 2MR blotted onto nitrocellulose from a sodium dodecyl sulfate-polyacrylamide gel. alpha 2MR immobilized on nitrocellulose in the absence of sodium dodecyl sulfate bound 45Ca2+ in the presence of 5 mM Mg2+, and 2-3 microM unlabeled Ca2+ was required to displace half of the bound 45Ca2+. The calcium concentration dependence showed upward concave Scatchard plots, and the number of binding sites was estimated to be approximately eight/alpha 2MR molecule. Binding of calcium did not change in the pH range 6.5-8.0 but decreased at lower pH values. Addition of Ca2+ to the medium was necessary for receptor binding of the alpha 2-macroglobulin-trypsin complex, and half of the maximal binding capacity was obtained with about 16 micrograms Ca2+ at pH 7.8. The requirement for calcium was increased at lower pH values, and half of the maximal 125I-alpha 2M-trypsin binding was obtained with about 30-40 microM Ca2+ at pH 7.0. Monoclonal antibodies were produced against alpha 2MR, and one of them distinguished between the Ca2(+)-occupied and nonoccupied forms. Like Ca2+, Sr2+ and Ba2+ elicited ligand binding affinity and competed for binding with 45Ca2+ in the order Ca2+ greater than Sr2+ greater than Ba2+. In conclusion, calcium ions bind specifically to alpha 2MR with high affinity, and it is likely that several sites on the alpha 2MR molecule have to be occupied to elicit the conformation recognizing the ligand.  相似文献   

2.
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor.  相似文献   

3.
Ten peptides, derived from human alpha 2-macroglobulin (alpha 2M) receptor by chemical or proteolytic digestion, were sequenced. Comparative analysis revealed that all of the resulting sequences were present within the cDNA-deduced structure of low density lipoprotein receptor-related protein (LRP) (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H., and Stanley, K. K. (1988) EMBO J. 7, 4119-4127). The findings provide evidence that the alpha 2M receptor and LRP are the same molecule. Further evidence comes from immunoprecipitation experiments using a monoclonal antibody specific for the alpha 2M receptor that show this molecule, like LRP, to contain two polypeptides of approximately 420 and 85 kDa that are noncovalently associated. An additional component of this receptor system is a 39-kDa polypeptide that co-purifies with the alpha 2M receptor during affinity chromatography. Solid phase binding studies reveal that the 39-kDa polypeptide binds with high affinity (Kd = 18 nM) to the 420-kDa component of the alpha 2M receptor. The apparent identity of LRP and the alpha 2M receptor suggests that this molecule is a multifunctional receptor with the capacity to bind diverse biological ligands and highlights a possible relationship between two previously unrelated biological processes, lipid metabolism and proteinase regulation.  相似文献   

4.
Pharmacological evidence has suggested that endothelin-3 (ET-3) may act via a novel form of ET receptor that is shared by ETA receptor antagonists but not by ETB receptor selective agonists. This study analyses the properties of interaction of ET-3 with recombinant bovine ETA receptor. Apparent Kd(ET-3) values as low as 50 nM were defined from [125I]ET-1 binding experiments performed at low (5 microg/ml) protein concentrations in the assays. Larger (up to 1 microM) values were artefactually obtained in experiments performed at larger protein concentrations. The three monoiodo ET-3 derivatives were synthetized. ([125I]Y14)ET-3 did not recognize ETA receptors. ([125I]Y6)ET-3 labelled 18% of [125I]ET-1 binding sites with a Kd value of 320 pM. ([125I]Y13)ET-3 labelled 44% of [125I]ET-1 binding sites with a Kd value of 130 pM. High affinity ([125I]Y6)ET-3 and ([125I]Y13)ET-3 bindings were prevented by ET-1 (Kd = 5-7 pM), ET-3 (Kd = 70-250 pM), BQ-123 (Kd = 2 nM) and FR139317 (Kd = 2 nM) but not by low concentrations of 4-AlaET-1, sarafotoxin S6c or IRL1620. The three monoiodo ET-3 derivatives bound to recombinant rat ETB receptors with a pM affinity. The results suggest that ET-3, ([125I]Y6)ET-3 and ([125I]Y13)ET-3 should not be considered as ETB receptor specific ligands.  相似文献   

5.
Complement component 3 (C3) and alpha(2)-macroglobulin evolved from a common, evolutionarily old, ancestor gene. Low density lipoprotein-receptor-related protein/alpha(2)-macroglobulin receptor (LRP/alpha(2)MR), a member of the low density lipoprotein receptor family, is responsible for the clearance of alpha(2)-macroglobulin-protease complexes. In this study, we examined whether C3 has conserved affinity for LRP/alpha(2)MR. Ligand blot experiments with human (125)I-C3 on endosomal proteins show binding to a 600-kDa protein, indistinguishable from LRP/alpha(2)MR by the following criteria: it is competed by receptor-associated protein (the 39-kDa receptor-associated protein that impairs binding of all ligands to LRP/alpha(2)MR) and by lactoferrin and Pseudomonas exotoxin, other well known ligands of the multifunctional receptor. Binding of C3 is sensitive to reduction of the receptor and is Ca(2+)-dependent. All these features are typical for cysteine-rich binding repeats of the low density lipoprotein receptor family. In LRP/alpha(2)MR, they are found in four cassettes (2, 8, 10, and 11 repeats). Ligand blotting to chicken LR8 demonstrates that a single 8-fold repeat is sufficient for binding. Confocal microscopy visualizes initial surface labeling of human fibroblasts incubated with fluorescent labeled C3, which changes after 5 min to an intracellular vesicular staining pattern that is abolished in the presence of receptor-associated protein. Cell uptake is abolished in mouse fibroblasts deficient in LRP/alpha(2)MR. Native plasma C3 is not internalized. We demonstrate that the capacity to internalize C3 is saturable and exhibits a K(D) value of 17 nM. After intravenous injection, rat hepatocytes accumulate C3 in sedimentable vesicles with a density typical for endosomes. In conclusion, our ligand blot and uptake studies demonstrate the competence of the LRP/alpha(2)MR to bind and endocytose C3 and provide evidence for an LRP/alpha(2)MR-mediated system participating in C3 metabolism.  相似文献   

6.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site.  相似文献   

7.
The interaction of putative Ca2+ channels of Drosophila head membranes with molecules of the phenylalkylamine series was studied from binding experiments using (-)-[3H]D888 and (+/-)-[3H]verapamil. These ligands recognize a single class (Kd = 0.1-0.4 nM; Bmax = 1600-1800 fmol/mg of protein) of very high affinity binding sites. The most potent molecule in the phenylalkylamine series was (-)-verapamil with a Kd value as exceptionally low as 4.7 pM. Molecules in the benzothiazepine and diphenylbutylpiperidine series of Ca2+ channel blockers as well as bepridil inhibited (-)-[3H]D888 binding in a competitive way with Kd values between 12 and 190 nM, suggesting a close correlation, as in the mammalian system, between these receptor sites and those recognizing phenylalkylamines. A tritiated (arylazido)phenylalkylamine with high affinity for the Drosophila head membranes, phenylalkylamine receptor Kd = 0.24 nM), was used in photoaffinity experiments. A protein of Mr 135,000 +/- 5,000 was specifically labeled after ultraviolet irradiation.  相似文献   

8.
Binding and endocytosis of alpha 2-macroglobulin-plasmin complexes   总被引:1,自引:0,他引:1  
K A Ney  S Gidwitz  S V Pizzo 《Biochemistry》1985,24(17):4586-4592
The clearance of 125I-labeled alpha 2-macroglobulin-plasmin complexes (125I-alpha 2M-PM) from mouse circulation is slower than that of 125I-labeled alpha 2M-methylamine complexes (125I-alpha 2M-CH3NH2). In addition, clearance of 125I-alpha 2M-PM is biphasic, but that of 125I-alpha 2M-CH3NH2 follows simple first-order kinetics. Treatment of alpha 2M-PM with trypsin yields a complex that clears like alpha 2M-CH3NH2. Complexes of alpha 2M with Val442-plasmin (alpha 2M-Val442-PM) were prepared; alpha 2M-Val442-PM has a stoichiometry of 2 mol of Val442-PM to 1 mol of alpha 2M and also clears like alpha 2M-CH3NH2. In vitro 4 degrees C binding inhibition studies with mouse peritoneal macrophages show that alpha 2M-CH3NH2, alpha 2M-PM, trypsin-treated alpha 2M-PM, and alpha 2M-Val442-PM bind with the same affinity, apparent Kd = 0.4 nM. The binding isotherms at 4 degrees C are the same for 125I-alpha 2M-CH3NH2, 125I-alpha 2M-PM, and 125I-trypsin-treated alpha 2M-PM in both mouse peritoneal macrophages and 3T3-L1 fibroblasts. The Scatchard plots for the binding isotherms in macrophages were curved; those in 3T3-L1 fibroblasts were linear with an apparent Kd of 0.48 nM and a receptor activity of 140 fmol/mg of cell protein for alpha 2M-CH3NH2, an apparent Kd of 0.29 nM and a receptor activity of 110 fmol/mg of cell protein for alpha 2M-PM, and an apparent Kd of 0.35 nM and a receptor activity of 210 fmol/mg of cell protein for trypsin-treated alpha 2M-PM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1. The binding characteristics of gastric mucosal prostaglandin (PG) E2 (PGE2) receptor were investigated using mucosal cell membranes from rat stomach. The binding was found to be dependent upon PGE2 and membrane protein concentration, the time of incubation and the pH of the mixture, being highest at pH 3.0. 2. Scatchard analysis of the binding data revealed a curvilinear plot with high affinity binding (Kd = 2 nM; Bmax = 0.106 pmol/mg protein) and low affinity binding (Kd = 319 nM; Bmax = 2.262 pmol/mg protein) sites. 3. Competitive displacement study indicated that the receptor was specific for PGs of the E series, as PGF2 alpha and 6-keto-PGF1 alpha failed to displace the PGE2. 4. The study is the first report to provide biochemical parameters of specific PGE receptors in rat gastric mucosa.  相似文献   

10.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2 MR/LRP) is a large cell-surface glycoprotein consisting of a 515-kDa and an 85-kDa polypeptide; this receptor is thought to be responsible for the binding and endocytosis of activated alpha 2-macroglobulin and apoE-enriched beta-very low density lipoprotein. A similar high molecular weight glycoprotein has been identified as a potential receptor for Pseudomonas exotoxin A (PE). We demonstrate that the alpha 2 MR/LRP and the PE-binding glycoprotein have a similar mobility upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are immunologically indistinguishable. Furthermore, affinity-purified alpha 2 MR/LRP binds specifically to PE but not to a mutant toxin defective in its ability to bind cells. The 39-kDa receptor-associated protein, which blocks binding of ligands to alpha 2 MR/LRP, also prevents binding and subsequent toxicity of PE for mouse fibroblasts. The concentration of receptor-associated protein that was required to reduce binding and toxicity to 50% was approximately 14 nM, a value virtually identical to the KD measured for the interaction of receptor-associated protein with the purified receptor. Overall, the studies strongly suggest that the alpha 2 MR/LRP is responsible for internalizing PE.  相似文献   

11.
Chicken alpha-macroglobulin (alpha M) and ovomacroglobulin were purified by Ni+2 chelate chromatography. These proteins had similar subunit structure as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chicken alpha M bound 1.0 mol and ovomacroglobulin bound 0.8 mol 125I-trypsin per mol inhibitor, respectively. Ovomacroglobulin cleared rapidly from the circulation of mice, and the clearance was inhibited by asialoorosomucoid, but native chicken alpha M cleared slowly (t 1/2 greater than 1 h). After reaction with trypsin, this alpha-macroglobulin cleared rapidly (t 1/2 = 3 min), and this clearance was inhibited by a 1000-fold molar excess of human alpha 2M-methylamine. Ovomacroglobulin-trypsin did not inhibit the binding of 0.2 nM 125I-labeled human alpha 2M-methylamine to mouse peritoneal macrophages in vitro, but chicken alpha M reacted with trypsin inhibited the binding by 50% at 1.9 nM. A kappa I of 1.1 nM was calculated for the binding of chicken alpha M-trypsin to the mammalian alpha-macroglobulin receptor. This affinity is comparable to that obtained with human and bovine alpha 2M.  相似文献   

12.
The alpha(2-)macroglobulin receptor (alpha(2)MR) has been reported to mediate the internalization of the urokinase plasminogen activator receptor (uPAR) via ligand binding to both receptors. To target malignant uPAR-expressing cells and to determine whether uPAR can internalize without ligand binding to alpha(2)MR, we engineered two recombinant toxins, ATF-PE38 and ATF-PE38KDEL. Each consists of the amino-terminal fragment (ATF) of human urokinase and a truncated form of Pseudomonas exotoxin (PE) devoid of domain Ia, which binds alpha(2)MR. ATF-PE38 and ATF-PE38KDEL were cytotoxic toward malignant uPAR-bearing cells, with IC(50) values as low as 0.02 ng/ml (0.3 pM). Cytotoxicity could be blocked using either recombinant urokinase or free ATF, indicating that the cytotoxicity of the recombinant toxins was specific. Radiolabeled ATF-PE38 had high affinity for uPAR (K(d) = 0.4-8 nM) on a variety of different malignant cell types and internalized at a rate similar to that of ATF. The cytotoxicity was not diminished by receptor-associated protein, which binds and shields the alpha(2)MR from other proteins, or by incubation with phorbol myristate acetate, which is known to decrease the number of alpha(2)MRs in U937 cells or by antibodies to alpha(2)MR. Therefore, these recombinant toxins appear to internalize via uPAR without association with the alpha(2)MR.  相似文献   

13.
Two proteins forming the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF)1 were identified and characterized. One with apparent Mr of about 80,000 was defined as alpha-chain and has Kd of 0.7-2.8 nM. The other binding molecule with apparent Mr of about 135,000 was defined as beta-chain and is related to the high-affinity binding with Kd of 10-40 pM. The binding kinetic studies confirmed that the 125I-GM-CSF associated slower to and dissociated more rapidly from the alpha-chain than the beta-chain. The alpha-chain is expressed not only on hemopoietic cells but also on full-term placental tissues, choriocarcinoma cells, and other solid tumor cells. In contrast, the distribution of the beta-chain is restricted on hemopoietic cells. The alpha-chain probably corresponds to the low-affinity GM-CSF receptor whose cDNA has been cloned and sequenced.  相似文献   

14.
In this study we have investigated the effect that interleukin 1 (IL-1) has on cell surface IL-1 receptor expression in the murine thymoma cell line, EL4 6.1. These cells express IL-1 receptors with both high affinity (Kd = 65 pM, 986 receptors/cell) and low affinity (Kd = 14.5 nM, 10,417 receptors/cell). The high- and low-affinity receptors are indistinguishable by crosslinking studies performed at both high and low ligand concentrations. However, the two affinity states could be functionally distinguished on the basis of their internalization of ligand. Receptor-mediated endocytosis was dependent upon the concentration of ligand bound to the cells. In the presence of low IL-1 concentrations receptor-mediated endocytosis was slow, whereas at high IL-1 concentrations, endocytosis was more rapid. Furthermore, receptor-mediated endocytosis of IL-1 did not result in downregulation of surface IL-1 receptors. Indeed, both kinetic and equilibrium binding studies revealed that pre-incubation of cells with IL-1 alpha resulted in an acute upregulation of 125IL-1 alpha binding to high affinity surface receptors in a time and energy dependent manner. Examination of the association kinetics suggested that increased binding was not attributable to positive co-operativity of the high affinity IL-1 receptor, but was due to increasing IL-1 receptor number. This observation was confirmed by equilibrium binding studies. Moreover, receptor numbers were not enhanced by de novo synthesis, nor release of receptors from an intracellular pool. The observed increases in surface ligand binding were most probably due to conversion of the surface pool of low affinity receptors into high affinity receptors.  相似文献   

15.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein strongly related to alpha2-macroglobulin (alpha2-M). Both alpha-macroglobulins (alpha-Ms) covalently bind proteinases, which is accompanied by the exposure of carboxy terminal receptor recognition domains important for the rapid clearance from the circulation and tissues. It is accepted that the molecule responsible for the clearance of alpha2-M- and PZP-proteinase complexes is the low-density lipoprotein receptor-related protein (LRP). Although both alpha-M-proteinase complexes bind to the same receptor, differences in the binding properties have been reported. In addition, although it is known that the binding of alpha2-M-proteinase complexes to LRP can be blocked by Ni2+, the effect on PZP-proteinase has never been examined. In order to investigate differences in the binding properties of both alpha-Ms to the receptor, we purified LRP from human placenta by affinity chromatography and then analyzed the specificity and affinity of binding of alpha2-M- and PZP-proteinase complexes to the receptor by enzyme immunoassay. Our results clearly established that although both alpha-M-proteinase complexes specifically bind to LRP, PZP-chymotrypsin complexes bind to the receptor with lesser apparent affinity (Kd approximately equal 320 nM) than alpha2-M-chymotrypsin complexes (Kd approximately equal 40 nM). We also demonstrated that Ni2+ blocks the binding of alpha2-M-chymotrypsin complexes, but not PZP-chymotrypsin complexes, to LRP. These data suggest that the binding to LRP involves conformational differences between both alpha-Ms in a region immediately upstream of the carboxy terminal receptor recognition domain. The possibility that PZP-proteinase complexes interact with other receptors not available to alpha2-M-proteinase complexes could be considered.  相似文献   

16.
Efforts to characterize the receptor recognition domain of alpha-macroglobulins have primarily focused on human alpha 2-macroglobulin (alpha 2M). In the present work, the structure and function of the alpha-macroglobulin receptor recognition site were investigated by amino acid sequence analysis, plasma clearance, and cell binding studies using several nonhuman alpha-macroglobulins: bovine alpha 2M, rat alpha 1-macroglobulin (alpha 1M), rat alpha 1-inhibitor 3 (alpha 1I3), and proteolytic fragments derived from these proteins. Each alpha-macroglobulin bound to the murine peritoneal macrophage alpha-macroglobulin receptor with comparable affinity (Kd approximately 1 nM). A carboxyl-terminal 20-kDa fragment was isolated from each of these proteins, and this fragment bound to alpha-macroglobulin receptors with Kd values ranging from 10 to 125 nM. The amino acid identity between the homologous carboxyl-terminal 20-kDa fragments of human and bovine alpha 2M was approximately 90%, while the overall sequence homology between all carboxyl-terminal fragments studied was 75%. The interchain disulfide bond present in the human alpha 2M carboxyl-terminal 20-kDa fragment was conserved in bovine alpha 2M and rat alpha 1I3, but not in rat alpha 1M. The clearance of each intact alpha-macroglobulin-proteinase complex was significantly retarded following treatment with cis-dichlorodiammineplatinum(II) (cis-DDP). cis-DDP treatment, however, did not affect receptor recognition of purified carboxyl-terminal 20-kDa fragments of these alpha-macroglobulins. A carboxyl-terminal 40-kDa subunit, which can be isolated from rat alpha 1M, bound to the murine alpha-macroglobulin receptor with a Kd of 5 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Digestion of human alpha 2-macroglobulin-methylamine (alpha 2M-CH3NH2) with papain prior to gel filtration resulted in the resolution of three distinct peaks. The material in peak I (Mr approximately 600,000) and peak II (Mr approximately 55,000) did not have any receptor binding ability as determined by in vivo clearance studies and in vitro competitive binding studies using mouse peritoneal macrophages. In contrast, the material in peak III (Mr approximately 20,000) bound to macrophage alpha 2-macroglobulin (alpha 2M) receptors with a Kd of 250 nM. This represents a 500-fold decrease in affinity relative to undigested alpha 2M-CH3NH2. Sequence analysis demonstrated that this material constituted the carboxyl-terminal fragment (COOH-terminal fragment) of alpha 2M. alpha 2M is known to possess a methionyl residue which is susceptible to modification by cis-dichlorodiammineplatinum (II) (cis-DDP) with the result being a loss of receptor binding ability by alpha 2M. For this reason, experiments were performed to determine if the platinum-reactive methionyl residue is located in the COOH-terminal receptor binding fragment of alpha 2M. The results of this investigation demonstrate that cis-DDP is not reactive with either the isolated COOH-terminal fragment or the COOH-terminal fragment isolated from alpha 2M-CH3NH2 which had been pretreated with cis-DDP. In addition, the COOH-terminal fragment did not bind to monoclonal antibody 7H11D6, a monoclonal antibody which binds to the platinum-reactive epitope of the alpha 2M-CH3NH2 receptor recognition site. In contrast, the 55-kDa fragment of alpha 2M bound approximately 1 mol platinum/mol of 55-kDa fragment and also bound to monoclonal antibody 7H11D6. Since the COOH-terminal fragment retains some receptor binding ability, the results of this investigation demonstrate that this fragment is not the complete receptor recognition site and suggest that a platinum-reactive methionyl residue located in the 55-kDa fragment of alpha 2M is another component of this site.  相似文献   

19.
T Kitamura  N Sato  K Arai  A Miyajima 《Cell》1991,66(6):1165-1174
A cDNA for a human interleukin-3 (hIL-3) binding protein has been isolated by a novel expression cloning strategy: a cDNA library was coexpressed with the cDNA for the beta subunit of human granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor (hGMR beta) in COS7 cells and screened by binding of 125I-labeled IL-3. The cloned cDNA (DUK-1) encodes a mature protein of 70 kd, which belongs to the cytokine receptor family and which alone binds hIL-3 with extremely low affinity (Kd = 120 +/- 60 nM). A high affinity IL-3-binding site (Kd = 140 +/- 30 pM) was reconstituted by coexpressing the DUK-1 protein and hGMR beta, indicating that hIL-3R and hGMR share the beta subunit. Therefore, we designated DUK-1 as the alpha subunit of the hIL-3R. As in human hematopoietic cells, hIL-3 and hGM-CSF complete for binding in fibroblasts expressing the cDNAs for hIL-3R alpha, GMR alpha, and the common beta subunit, indicating that different alpha subunits compete for a common beta subunit.  相似文献   

20.
Quiescent normal human B cells have been shown to require an activation step before proliferating in response to B cell growth factor (BCGF) of 12,000 m.w. (12 kd). One effect of cell activation has been the putative acquisition of specific cell surface growth factor receptors. In this report, the existence of such receptors has been confirmed by using purified radioiodinated BCGF-12 kd. BCGF-12 kd receptors on activated B cells have been shown to be distinct form those interacting with IL 2. Scatchard analysis revealed both high affinity receptor sites with an apparent Kd of 28.6 pM and low affinity receptor sites with Kd of 1.2 nM on freshly prepared, anti-IgM activated peripheral blood B cells. Human B cells grown in culture for extended periods of time in the presence of BCGF-12 kd also displayed high affinity receptor sites (Kd, 41.4 pM) and low affinity receptor sites (Kd, 0.9 nM). The action of BCGF-12 kd therefore appears to be mediated by binding to its lineage-specific receptors on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号