首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clathrin triskelion self-assembles into a polyhedral coat surrounding membrane vesicles that sort receptor cargo to the endocytic pathway. A triskelion comprises three clathrin heavy chains joined at their C-termini, extending into proximal and distal leg segments ending in a globular N-terminal domain. In the clathrin coat, leg segments entwine into parallel and anti-parallel interactions. Here we define the contributions of segmental interactions to the clathrin assembly reaction and measure the strength of their interactions. Proximal and distal leg segments were found to lack sufficient affinity to form stable homo- or heterodimers under assembly conditions. However, chimeric constructs of proximal or distal leg segments, trimerized by replacement of the clathrin trimerization domain with that of the invariant chain protein, were able to self-assemble in reversible reactions. Thus clathrin assembly occurs because weak leg segment affinities are coordinated through trimerization, sharing a dependence on multiple weak interactions with other biopolymers. Such polymerization is sensitive to small environmental changes and is therefore compatible with cellular regulation of assembly, disassembly and curvature during formation of clathrin-coated vesicles.  相似文献   

2.
Clathrin light chains from bovine brain tissue (LC alpha and LC beta) are monomeric proteins with an average mol. wt. of approximately 33,000, as determined by sedimentation equilibrium. Solution studies on purified light chains indicate a large Stokes radius (Re = 3.3 nm) and little defined secondary structure. Both light chains bind specifically and with high affinity (KA approximately 5 x 10(7)/M) to overlapping sites on clathrin heavy chains. These binding sites are contained within a 125,000 dalton heavy chain fragment that forms truncated triskelions with legs, 15 nm shorter than those of intact triskelions. As judged by immuno-electron microscopy, light chain-specific IgG molecules bind mostly to the center of triskelions, but there are also sites that are scattered some 16 nm along the proximal part of triskelion legs. From heterologous binding experiments using human placenta light chains and heavy chain fragments from bovine brain clathrin, it is concluded that the domains of light and heavy chains that are involved in the interaction are conserved across tissue and species boundaries.  相似文献   

3.
Clathrin cubes: an extreme variant of the normal cage   总被引:3,自引:2,他引:1       下载免费PDF全文
Clathrin triskelions form polyhedral cages with hexagonal and pentagonal faces when dialyzed against suitable assembly buffers. However, when the buffer is made 12% saturated in ammonium sulfate and the dialysis is performed at 4 degrees C, clathrin polymerizes into cubes. The cube is constructed from eight triskelions with one at each corner. The edge length of the cube is approximately 45 nm, equivalent to the length of the leg of a triskelion. Thus, each edge of the cube is composed of two antiparallel legs overlapping over their whole length. The interactions between the legs in the cube are a subset of those postulated to occur in cages. Indeed, the cube can be derived from a pentagonal dodecahedron by removing 12 of the 20 triskelions with only slight adjustment of the legs of the remaining triskelions. The cube forms regular arrays and appears to be a favorable species for crystallization of clathrin.  相似文献   

4.
The association of clathrin fragments with coated vesicle membranes   总被引:6,自引:0,他引:6  
The association between clathrin triskelions and the clathrin-stripped membranes of coated vesicles has been investigated using a filter assay to separate bound from unbound clathrin. The filter assay is more sensitive and less cumbersome than a sedimentation assay used previously (1). While confirming the high affinity interaction between clathrin and the vesicle membrane, our results yield Scatchard plots that are curvilinear and consistent with a positively cooperative interaction between clathrin and the vesicle membranes. Controlled digestion with trypsin removes the distal portions of the triskelion legs leaving the proximal 31 nm portions that form the hub of the triskelions. These hubs are trimers of large 112,000- and 124,000-dalton fragments of clathrin heavy chains. They competitively inhibit the binding of 125I-labeled intact triskelions to stripped vesicles with a KI identical to the KD for the association of 125I-labeled intact triskelions to stripped vesicles. Furthermore, these large fragment trimers bind to stripped vesicles with approximately the same high affinity as do intact triskelions and also show evidence of a positively cooperative interaction. It is concluded that clathrin binds to coated vesicles by an interaction that is mediated by the proximal 112,000-dalton fragment of the clathrin heavy chains.  相似文献   

5.
Clathrin triskelions assemble into coats capable of packaging membrane and receptors for transport to intracellular destinations. A triskelion is formed from three heavy chains bound to three light chains. All clathrin light chains (clc) contain an acidic amino terminal domain, a central coiled segment, and a carboxy terminal domain conserved in amino acid sequence. To assess their functional contribution in vivo, we expressed tagged segments of the Dictyostelium clcA in clc-minus Dictyostelium (clc null) cells. We examined the ability of these clcA fragments to rescue clathrin phenotypic deficiencies, to cluster into punctae on membranes, and to bind to the heavy chain. When expressed in clc null cells, a clcA fragment containing the amino terminal domain and the central coiled domain bound heavy chain but was dispensable for clathrin function. Instead, the carboxy terminal domain of clcA was a critical determinant for association with punctae, for clathrin function and for robust binding to the heavy chain. A 70 amino acid carboxy terminal fragment was necessary and sufficient for full function, and for localization into punctae on intracellular membranes. A shorter 49 amino acid carboxy terminal fragment could distribute into punctae but failed to rescue developmental deficiencies. These results reveal the importance of the carboxy terminal domain of the light chain in vivo.  相似文献   

6.
The sorting of specific proteins into clathrin-coated pits and the mechanics of membrane invagination are determined by assembly of the clathrin lattice. Recent structures of a six-fold barrel clathrin coat at 21 A resolution by electron cryomicroscopy and of the clathrin terminal domain and linker at 2.6 A by X-ray crystallography together show how domains of clathrin interact and orient within the coat and reveal the strongly puckered shape and conformational variability of individual triskelions. The beta propeller of the terminal domain faces the membrane so that recognition segments from adaptor proteins can extend along its lateral grooves. Clathrin legs adapt to different coat environments in the barrel by flexing along a segment at the knee that is free of contacts with other molecules.  相似文献   

7.
Clathrin light chains are extended molecules located along the proximal segment of each of the three heavy chain legs of a clathrin trimer. All mammalian light chains share a central segment with 10 repeated heptad motifs believed to mediate the interaction with clathrin heavy chains. In order to test this model in more detail, we have expressed intact rat liver clathrin light chain LCB3 in Escherichia coli and find that it binds tightly to calf clathrin heavy chains. Using a set of expressed truncated mutants of LCB3, we show that the presence of seven to eight heptads is indeed necessary for a successful interaction. More extensive deletions of the central segment completely abolish the ability to bind to heavy chains. Neither the amino- nor the carboxyl-terminal domain is essential for binding, but competition experiments show that the presence of the carboxyl-terminal domain does enhance the interaction with heavy chains.  相似文献   

8.
C J Smith  N Grigorieff    B M Pearse 《The EMBO journal》1998,17(17):4943-4953
We present a map at 21 A resolution of clathrin assembled into cages with the endocytic adaptor complex, AP-2. The map was obtained by cryo-electron microscopy and single-particle reconstruction. It reveals details of the packing of entire clathrin molecules as they interact to form a cage with two nested polyhedral layers. The proximal domains of each triskelion leg depart from a cage vertex in a skewed orientation, forming a slightly twisted bundle with three other leg domains. Thus, each triskelion contributes to two connecting edges of the polyhedral cage. The clathrin heavy chains continue inwards under the vertices with local 3-fold symmetry, the terminal domains contributing to 'hook-like' features which form an intermediate network making possible contacts with the surface presented by the inner adaptor shell. A node of density projecting inwards from the vertex may correspond to the C-termini of clathrin heavy chains which form a protrusion on free triskelions at the vertex. The inter-subunit interactions visible in this map provide a structural basis for considering the assembly of clathrin coats on a membrane and show the contacts which will need to be disrupted during disassembly.  相似文献   

9.
Energetics of clathrin basket assembly   总被引:2,自引:0,他引:2  
A minimal thermodynamic model is used to study the in vitro equilibrium assembly of reconstituted clathrin baskets. The model contains parameters accounting for i) the combined bending and flexing rigidities of triskelion legs and hubs, ii) the intrinsic curvature of an isolated triskelion, and iii) the free energy changes associated with interactions between legs of neighboring triskelions. Analytical expressions for basket size distributions are derived, and published size distribution data (Zaremba S, Keen JH. J Cell Biol 1983;97: 1339–1347) are then used to provide estimates for net total basket assembly energies. Results suggest that energies involved in adding triskelions to partially formed clathrin lattices are small (of the order of kBT), in accord with the notion that lattice remodeling during basket formation occurs as a result of thermodynamic fluctuations. In addition, analysis of data showing the effects of assembly proteins (APs) on basket size indicates that the binding of APs increases the intrinsic curvature of an elemental triskelial subunit, the stabilizing energy of leg interactions, and the effective leg/hub rigidity. Values of effective triskelial rigidity determined in this investigation are similar to those estimated by previous analysis of shape fluctuations of isolated triskelia.  相似文献   

10.
The three-legged or triskelion shape of clathrin is critical for the formation of polyhedral lattices around clathrin-coated vesicles. Filamentous legs radiate from a common vertex, with amino acids 1550–1615 contributed by each leg to define the trimerization domain (Liu S-H, Wong ML, Craik CS, Brodsky FM. Cell 1995; 83: 257–267). Within this amino acid stretch there are 3 cysteines at positions 1565, 1569 and 1573 which are completely conserved in higher mammals from humans to C. elegans . The cysteine-to-serine mutation at position 1573 was observed to have the largest impact on clathrin structure and self-assembly. We have also found that Cysteine 1528 located near the boundary between the proximal region and trimerization domain mediated the formation of nonproductive clathrin aggregates when bound light chain subunits were removed. However, when light chains were added back, the ability of this cysteine to form disulfide bridges between individual clathrin molecules was blocked, suggesting bound light chain interacted with Cysteine 1528 to prevent aggregation. This new information serves to map the orientation of the light chain subunit in the vicinity of the trimerization domain and supports previous models that indicate involvement of the trimerization domain in LC binding (Chen C-Y, Reese ML, Hwang PK, Ota N, Agard D, Brodsky FM. EMBO J 2002; 21: 6072–6082; Pishvaee B, Munn A, Payne GS. EMBO J 1997; 16: 2227–2239).  相似文献   

11.
Jin AJ  Nossal R 《Biophysical journal》2000,78(3):1183-1194
Statistical analysis is applied to a set of electron micrographic images (Kocsis, E., B. L. Trus, C. J. Steer, M. E. Bisher, and A. C. Steven. 1991. J. Struct. Biol. 107:6-14), from which quantitative measures are obtained to support the notion that the three arms of a triskelion have statistically identical properties and exhibit independent structural fluctuations. Additionally, a study of local contour fluctuations, which indicates that the elastic properties of a triskelion arm are approximately constant over the entire arm length, is used along with a small deformation statistical mechanics theory to derive an effective, average flexural rigidity for the arms. This result is used to estimate the bending energy necessary to deform a clathrin patch, and comparison is made with the deformation energy of an equivalent area of non-clathrin-coated membrane. We estimate that the rigidity of the clathrin lattice is at least comparable to that of a typical membrane. Hence, the natural curvature of a clathrin cage can stabilize, and perhaps propel, the formation of intracellular coated vesicles.  相似文献   

12.
Clathrin polymerization into a polyhedral basket, surrounding budding membrane vesicles, mediates protein sorting during endocytosis and organelle biogenesis. Adaptor proteins target clathrin assembly to specific membrane sites and sequester receptors into the clathrin coat. We have reconstituted complete clathrin basket formation from recombinantly expressed fragments of clathrin and adaptors. This reconstitution reveals a hierarchy of clathrin self-assembly interactions and demonstrates that adaptors control basket formation by alignment of the distal domains of the clathrin triskelion leg through their binding to the terminal domain.  相似文献   

13.
Folding and trimerization of clathrin subunits at the triskelion hub.   总被引:11,自引:0,他引:11  
The triskelion shape of the clathrin molecule enables it to form the polyhedral protein network that covers clathrin-coated pits and vesicles. Domains within the clathrin heavy chain that are responsible for maintaining triskelion shape and function were identified and localized. Sequences that mediate trimerization are distal to the carboxyl terminus and are adjacent to a domain that mediates both light chain binding and clathrin assembly. Structural modeling predicts that within this domain, the region of heavy chain-light chain interaction is a bundle of three or four alpha helices. These studies establish a low resolution model of clathrin subunit folding in the central portion (hub) of the triskelion, thus providing a basis for future mutagenesis experiments.  相似文献   

14.
The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins, triskelia will self-assemble to form a closed clathrin cage, or “basket”. Recent static light scattering and dynamic light scattering studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred from a high resolution cryoEM structure of a triskelion in a clathrin basket. We extend the earlier solution studies by performing small-angle neutron scattering (SANS) experiments on isolated triskelia, allowing us to examine a higher q range than that probed by static light scattering. Results of the SANS measurements are consistent with the light scattering measurements, but show a shoulder in the scattering function at intermediate q values (0.016 Å−1), just beyond the Guinier regime. This feature can be accounted for by Brownian dynamics simulations based on flexible bead-spring models of a triskelion, which generate time-averaged scattering functions. Calculated scattering profiles are in good agreement with the experimental SANS profiles when the persistence length of the assumed semiflexible triskelion is close to that previously estimated from the analysis of electron micrographs.  相似文献   

15.
Deep-etch visualization of 27S clathrin: a tetrahedral tetramer   总被引:3,自引:3,他引:0       下载免费PDF全文
It has recently been reported that 8S clathrin trimers or "triskelions" form larger 27S oligomers upon dialysis into low ionic strength buffers (Prasad, K., R. E. Lippoldt, H. Edelhoch, and M. S. Lewis, 1986, Biochemistry, 25:5214-5219). Here, deep-etch electron microscopy of the 27S species reveals that they are closed tetrahedra composed of four clathrin triskelions. This was determined by two approaches. First, standard quick-freezing and freeze-etching of unfixed 27S species suspended in 2 mM 2-(N-morpholino)ethane sulfonic acid (MES) buffer, pH 5.9, yielded unambiguous images of tetrahedra that measured 33 nm on each edge. Second, the technique of freeze-drying molecules on mica (Heuser, J. E., 1983, J. Mol. Biol., 169:155-195) was modified to overcome the low affinity of mica in 2 mM MES, by pretreating the mica with polylysine. Thereafter, 27S species adsorbed avidly to it and collapsed into characteristic configurations containing four globular domains, each linked to the others by three approximately 33-nm struts. The globular domains look like vertices of deep-etched clathrin triskelions and the links, numbering 12 in all, look like four sets of triskelion legs. New light scattering and equilibrium centrifugation data confirm that 27S polymer is four times as massive as one clathrin triskelion. We conclude that in conditions that do not favor the formation of standard clathrin cages, low affinity interactions lead to closed, symmetrical assemblies of four triskelions, each of which assumes a unique puckered, straight-legged configuration to create the edges of a tetrahedron. Tetrahedra are similar in construction to the cubic octomers of clathrin recently found in ammonium sulfate solutions (Sorger, P. K., R. A. Crowther, J. T. Finch, and B. M. F. Pearse, 1986, J. Cell Biol., 103:1213-1219) but are still smaller, involving only half as many clathrin triskelions.  相似文献   

16.
New faces of the familiar clathrin lattice   总被引:1,自引:1,他引:0  
The clathrin triskelion self-assembles into a lattice that coats transport vesicles participating in several key membrane traffic pathways. A new model of a clathrin lattice at approximately 8 angstrom resolution, generated by Fotin et al. (Nature 2004;432:573) confirmed the basic structural features of clathrin that were defined over many years of biochemical and structural analysis. In addition, new structural features of the clathrin trimerization domain were modelled for the first time, and the predictions correlated well with previous biochemical studies. A second model, placing auxilin within the lattice suggested a possible lattice contact targeted during lattice disassembly (Fotin et al. Nature 2004;432:649). This contact predicts interactions of the newly modelled trimerization domain with a newly defined extension of the clathrin triskelion, the ankle domain. These aspects of the new models were emphasized in the published reports describing them and in recent commentary (Brodsky, Nature 2004;432:568). Also emerging from the new models is a better picture of how the clathrin structure is distributed throughout the lattice, allowing the first predictions of interacting molecular interfaces contributing to contacts in the assembled lattice. The focus of this interchange is to emphasize these additional features revealed by the recently published models from Fotin and colleagues.  相似文献   

17.
Clathrin assembly into coated pits and vesicles is promoted by accessory proteins such as auxilin and AP180, and disassembly is effected by the Hsc70 ATPase. These interactions may be mimicked in vitro by the assembly and disassembly of clathrin "baskets." The chimera C58J is a minimal construct capable of supporting both reactions; it consists of the C58 moiety of AP180, which facilitates clathrin assembly, fused with the J domain of auxilin, which recruits Hsc70 to baskets. We studied the process of disassembly by using cryo-electron microscopy to identify the initial binding site of Hsc70 on clathrin-C58J baskets at pH 6, under which conditions disassembly does not proceed further. Hsc70 interactions involve two sites: (i) its major interaction is with the sides of spars of the clathrin lattice, close to the triskelion hubs and (ii) there is another interaction at a site at the N-terminal hooks of the clathrin heavy chains, presumably via the J domain of C58J. We propose that individual triskelions may be extricated from the clathrin lattice by the concerted action of up to six Hsc70 molecules, which intercalate between clathrin leg segments, prying them apart. Three Hsc70s remain bound to the dissociated triskelion, close to its trimerization hub.  相似文献   

18.
A novel structural model for regulation of clathrin function.   总被引:7,自引:3,他引:4       下载免费PDF全文
B Pishvaee  A Munn    G S Payne 《The EMBO journal》1997,16(9):2227-2239
The distinctive triskelion shape of clathrin allows assembly into polyhedral lattices during the process of clathrin-coated vesicle formation. We have used random and site-directed mutagenesis of the yeast clathrin heavy chain gene (CHC1) to characterize regions which determine Chc trimerization and binding to the clathrin light chain (Clc) subunit. Analysis of the mutants indicates that mutations in the trimerization domain at the triskelion vertex, as well as mutations in the adjacent leg domain, frequently influence Clc binding. Strikingly, one mutation in the trimerization domain enhances the association of Clc with Chc. Additional mutations in the trimerization domain, in combination with mutations in the adjacent leg domain, exhibit severe defects in Clc binding while maintaining near normal trimerization properties. The position of these trimerization domain mutations on one face of a putative alpha-helix defines a region on the trimer surface that interacts directly with Clc. These results suggest that Clc extends into the Chc trimerization domain from the adjacent leg, thereby bridging the two domains. On the basis of this conclusion, we propose a new model for the organization of the triskelion vertex which provides a structural basis for regulatory effects of Clc on clathrin function.  相似文献   

19.
Identification of coated vesicles in Saccharomyces cerevisiae   总被引:13,自引:5,他引:8  
Clathrin-coated vesicles were found in yeast, Saccharomyces cerevisiae, and enriched from spheroplasts by a rapid procedure utilizing gel filtration on Sephacryl S-1000. The coated vesicles (62-nm diam) were visualized by negative stain electron microscopy and clathrin triskelions were observed by rotary shadowing. The contour length of a triskelion leg was 490 nm. Coated vesicle fractions contain a prominent band with molecular weight of approximately 185,000 when analyzed by SDS PAGE. The presence of coated vesicles in yeast cells suggests that this organism will be useful for studying the function of clathrin-coated vesicles.  相似文献   

20.
Clathrin assembly involves a light chain-binding region   总被引:3,自引:2,他引:1       下载免费PDF全文
Two regions on the clathrin heavy chain that are involved in triskelion interactions during assembly have been localized on the triskelion structure. These regions were previously identified with anti-heavy chain monoclonal antibodies X19 and X35, which disrupt clathrin assembly (Blank, G. S., and F. M. Brodsky, 1986, EMBO (Eur. Mol. Biol. Organ.) J., 5:2087-2095). Antibody-binding sites were determined based on their reactivity with truncated triskelions, and were mapped to an 8-kD region in the middle of the proximal portion of the triskelion arm (X19) and a 6-kD region at the triskelion elbow (X35). The elbow site implicated in triskelion assembly was also shown to be included within a heavy chain region involved in binding the light chains and to constitute part of the light chain-binding site. We postulate that this region of the heavy chain binds to the interaction site identified on the light chains that has homology to intermediate filament proteins (Brodsky, F. M., C. J. Galloway, G. S. Blank, A. P. Jackson, H.-F. Seow, K. Drickamer, and P. Parham, 1987, Nature (Lond.), 326:203-205). These findings suggest the existence of a heavy chain site, near the triskelion elbow, which is involved in both intramolecular and intermolecular interactions during clathrin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号