首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular mechanisms for the regulation of Ca(2+)-dependent myosin light chain phosphorylation were investigated in bovine tracheal smooth muscle. Increases in the free intracellular Ca2+ concentration ([Ca2+]i), light chain phosphorylation, and force were proportional to carbachol concentration. KCaM, the concentration of Ca2+/calmodulin required for half-maximal activation of myosin light chain kinase, also increased proportionally, presumably due to Ca(2+)-dependent phosphorylation of the kinase. Isoproterenol treatment inhibited agonist-induced contraction by decreasing [Ca2+]i and thereby light chain phosphorylation. Depolarization by increasing concentrations of KCl also resulted in proportional increases in [Ca2+]i, KCaM, light chain phosphorylation, and force. However, the [Ca2+]i required to obtain a given value of either light chain phosphorylation or KCaM was greater in KCl-depolarized tissues compared to carbachol-treated tissues. In muscles contracted with KCl, isoproterenol treatment resulted in diminished light chain phosphorylation and force without alterations in [Ca2+]i or KCaM. Thus, isoproterenol inhibition of KCl-induced contraction results from a cellular mechanism different from that found in agonist-induced contraction. In neither case does isoproterenol produce relaxation by altering the calmodulin activation properties of myosin light chain kinase.  相似文献   

2.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

3.
The inhibition of myosin phosphatase evokes smooth muscle contraction in the absence of Ca(2+), yet the underlying mechanisms are not understood. To this end, we have cloned smooth muscle zipper-interacting protein (ZIP) kinase cDNA. ZIP kinase is present in various smooth muscle tissues including arteries. Triton X-100 skinning did not diminish ZIP kinase content, suggesting that ZIP kinase associates with the filamentous component in smooth muscle. Smooth muscle ZIP kinase phosphorylated smooth muscle myosin as well as the isolated 20-kDa myosin light chain in a Ca(2+)/calmodulin-independent manner. ZIP kinase phosphorylated myosin light chain at both Ser(19) and Thr(18) residues with the same rate constant. The actin-activated ATPase activity of myosin increased significantly following ZIP kinase-induced phosphorylation. Introduction of ZIP kinase into Triton X-100-permeabilized rabbit mesenteric artery provoked a Ca(2+)-free contraction. A protein phosphatase inhibitor, microcystin LR, also induced contraction in the absence of Ca(2+), which was accompanied by an increase in both mono- and diphosphorylation of myosin light chain. The observed sensitivity of the microcystin-induced contraction to various protein kinase inhibitors was identical to the sensitivity of isolated ZIP kinase to these inhibitors. These results suggest that ZIP kinase is responsible for Ca(2+) independent myosin phosphorylation and contraction in smooth muscle.  相似文献   

4.
Cell calcium and its regulation in smooth muscle   总被引:22,自引:0,他引:22  
A P Somlyo  B Himpens 《FASEB journal》1989,3(11):2266-2276
Two novel methods used to study smooth muscles-electron probe X-ray microanalysis and Ca2+-sensitive indicators (which are used for resolving, respectively, the spatial distribution and temporal distribution of calcium)-are briefly reviewed and the major findings obtained are summarized. In smooth muscle the sarcoplasmic reticulum is the major intracellular source of Ca2+; mitochondria do not play a significant role in the physiological regulation of [Ca2+]i. Under pathological conditions mitochondria can reversibly accumulate large amounts of calcium. Resting [Ca2+]i generally ranges from 80 to 200 nM, and is lower in phasic than in tonic smooth muscles. Removal of extracellular Ca2+ and Ca2+ entry blockers can reduce [Ca2+]i, but the effects of beta-adrenergic agents are variable. Increases in [Ca2+]i are triggered by electrical stimulation, depolarization with high K+, and excitatory agonists. Stretch, after a delay of several seconds, can cause an increase in [Ca2+]i in some smooth muscles. There is also a delay of approximately 200-400 ms between the initiation of the rise of Ca2+ and contraction that follows spontaneous action potentials or electrical stimulation. Agonist-induced Ca2+ release, a major mechanism of pharmacomechanical coupling, has been demonstrated in smooth muscles depolarized with high K; evidence suggests that it is mediated by G proteins that couple receptors to phospholipase C. Ca2+ release can be triggered directly in permeabilized smooth muscle with inositol 1,4,5-trisphosphate. Even though Ca2+ is the major physiological regulator of contraction, Ca2+ sensitivity of the regulatory-contractile apparatus differs in different (phasic and tonic) smooth muscles, and can be modulated in a given smooth muscle. The force [Ca2+]i ratio is higher during agonist-stimulated than during high K+-induced contractions, owing to agonist-induced increases in Ca2+ sensitivity mediated by G proteins. In some phasic smooth muscles (guinea pig ileum), the time course of the initial myosin light chain phosphorylation is extremely rapid and returns to basal levels while force remains elevated. In these smooth muscles there is also a marked decrease in the Ca2+ sensitivity of the regulatory-contractile apparatus during maintained depolarization in Ca2+-free or low Ca2+ solutions. It has been suggested that regulation of myosin light chain phosphatase plays a major role in the modulation of the Ca2+ sensitivity manifested as either potentiation or desensitization to [Ca2+]i.  相似文献   

5.
The contractile state of smooth muscle is regulated primarily by the sarcoplasmic (cytosolic) free Ca2+ concentration. A variety of stimuli that induce smooth muscle contraction (e.g., membrane depolarization, alpha-adrenergic and muscarinic agonists) trigger an increase in sarcoplasmic free [Ca2+] from resting levels of 120-270 to 500-700 nM. At the elevated [Ca2+], Ca2+ binds to calmodulin, the ubiquitous and multifunctional Ca(2+)-binding protein. The interaction of Ca2+ with CaM induces a conformational change in the Ca(2+)-binding protein with exposure of a site(s) of interaction with target proteins, the most important of which in the context of smooth muscle contraction is the enzyme myosin light chain kinase. The interaction of calmodulin with myosin light chain kinase results in activation of the kinase that catalyzes phosphorylation of myosin at serine-19 of each of the two 20-kDa light chains (native myosin is a hexamer composed of two heavy chains (230 kDa each) and two pairs of light chains (one pair of 20 kDa each and the other pair of 17 kDa each)). This simple phosphorylation reaction triggers cycling of myosin cross-bridges along actin filaments and the development of force. Relaxation of the muscle follows removal of Ca2+ from the sarcoplasm, whereupon calmodulin dissociates from myosin light chain kinase regenerating the inactive kinase; myosin is dephosphorylated by myosin light chain phosphatase(s), whereupon it dissociates and remains detached from the actin filament and the muscle relaxes. A substantial body of evidence has been accumulated in support of this central role of myosin phosphorylation-dephosphorylation in the regulation of smooth muscle contraction. However, a wide range of physiological and biochemical studies supports the existence of additional, secondary Ca(2+)-dependent mechanisms that can modulate or fine-tune the contractile state of the smooth muscle cell. Three such mechanisms have emerged: (i) the actin-, tropomyosin-, and calmodulin-binding protein, calponin; (ii) the actin-, myosin-, tropomyosin-, and calmodulin-binding protein, caldesmon; and (iii) the Ca(2+)- and phospholipid-dependent protein kinase (protein kinase C).  相似文献   

6.
In vertebrate smooth muscle actomyosin and myofibrils a myosin light chain of molecular weight about 20,000 becomes phosphorylated at the same Ca2+ concentration as required to stimulate the actin-activated ATPase activity of myosin. Further, the degree of phosphorylation in the preparations as well as in various reconstituted actomyosins is proportional to their measured Ca2+ sensitivity. The phosphorylation process is very rapid and is essentially completed before the rise in ATPase activity. The enzyme responsible for the observed myosin phosphoylation is a specific myosin light chain kinase which is routinely co-purified with myosin. This kinase is normally present in actomyosin and its removal together with tropomyosin leads to a complete loss of the actin-activated ATPase activity. It is suggested that the Ca-dependent phosphorylation of the light chain via the light chain kinase represents the initial step in the activation of myosin that leads to contraction. Relaxation is probably effected by an as yet uncharacterised light chain phosphatase.  相似文献   

7.
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells.  相似文献   

8.
The role of protein kinase C (PKC) in sustained contraction was examined in intestinal circular and longitudinal muscle cells. Initial contraction induced by agonists (CCK-8 and neuromedin C) was abolished by 1) inhibitors of Ca(2+) mobilization (neomycin and dimethyleicosadienoic acid), 2) calmidazolium, and 3) myosin light chain (MLC) kinase (MLCK) inhibitor KT-5926. In contrast, sustained contraction was not affected by these inhibitors but was abolished by 1) the PKC inhibitors chelerythrine and calphostin C, 2) PKC-epsilon antibody, and 3) a pseudosubstrate PKC-epsilon inhibitor. GDPbetaS abolished both initial and sustained contraction, whereas a Galpha(q/11) antibody inhibited only initial contraction, implying that sustained contraction was dependent on activation of a distinct G protein. Sustained contraction induced by epidermal growth factor was inhibited by calphostin C, PKC-alpha,beta,gamma antibody, and a pseudosubstrate PKC-alpha inhibitor. Ca(2+) (0.4 microM) induced an initial contraction in permeabilized muscle cells that was blocked by calmodulin and MLCK inhibitors and a sustained contraction that was blocked by calphostin C and a PKC-alpha,beta,gamma antibody. Thus initial contraction induced by Ca(2+), agonists, and growth factors is mediated by MLCK, whereas sustained contraction is mediated by specific Ca(2+)-dependent and -independent PKC isozymes. G protein-coupled receptors are linked to PKC activation via distinct G proteins.  相似文献   

9.
Smooth muscle contraction follows an increase in cytosolic Ca(2+) concentration, activation of myosin light chain kinase, and phosphorylation of the 20-kDa light chain of myosin at Ser(19). Several agonists acting via G protein-coupled receptors elicit a contraction without a change in [Ca(2+)](i) via inhibition of myosin light chain phosphatase and increased myosin phosphorylation. We showed that microcystin (phosphatase inhibitor)-induced contraction of skinned smooth muscle occurred in the absence of Ca(2+) and correlated with phosphorylation of myosin light chain at Ser(19) and Thr(18) by a kinase distinct from myosin light chain kinase. In this study, we identify this kinase as integrin-linked kinase. Chicken gizzard integrin-linked kinase cDNA was cloned, sequenced, expressed in E. coli, and shown to phosphorylate myosin light chain in the absence of Ca(2+) at Ser(19) and Thr(18). Subcellular fractionation revealed two distinct populations of integrin-linked kinase, including a Triton X-100-insoluble component that phosphorylates myosin in a Ca(2+)-independent manner. These results suggest a novel function for integrin-linked kinase in the regulation of smooth muscle contraction via Ca(2+)-independent phosphorylation of myosin, raise the possibility that integrin-linked kinase may also play a role in regulation of nonmuscle motility, and confirm that integrin-linked kinase is indeed a functional protein-serine/threonine kinase.  相似文献   

10.
Phosphorylation of the regulatory light chain of myosin by the Ca2+/calmodulin-dependent myosin light chain kinase plays an important role in smooth muscle contraction, nonmuscle cell shape changes, platelet contraction, secretion, and other cellular processes. Smooth muscle myosin light chain kinase is also phosphorylated, and recent results from experiments designed to satisfy the criteria of Krebs and Beavo for establishing the physiological significance of enzyme phosphorylation have provided insights into the cellular regulation and function of this phosphorylation in smooth muscle. The multifunctional Ca2+/calmodulin-dependent protein kinase II phosphorylates myosin light chain kinase at a regulatory site near the calmodulin-binding domain. This phosphorylation increases the concentration of Ca2+/calmodulin required for activation and hence increases the Ca2+ concentrations required for myosin light chain kinase activity in cells. However, the concentration of cytosolic Ca2+ required to effect myosin light chain kinase phosphorylation is greater than that required for myosin light chain phosphorylation. Phosphorylation of myosin light chain kinase is only one of a number of mechanisms used by the cell to down regulate the Ca2+ signal in smooth muscle. Since both smooth and nonmuscle cells express the same form of myosin light chain kinase, this phosphorylation may play a regulatory role in cellular processes that are dependent on myosin light chain phosphorylation.  相似文献   

11.
Zipper-interacting protein kinase (ZIPK) is a serine-threonine kinase that has been implicated in Ca2+-independent myosin II phosphorylation and contractile force generation in vascular smooth muscle. However, relatively little is known about the contribution of this kinase to gastrointestinal smooth muscle contraction. The addition of a recombinant version of ZIPK that lacked the leucine zipper domain to permeabilized ileal strips evoked a Ca2+-independent contraction and resulted in myosin regulatory light chain diphosphorylation at Ser19 and Thr18. Neither Ca2+-independent force development nor myosin regulatory light chain phosphorylation was elicited by the addition of kinase-dead ZIPK to the ileal strips. The sensitivity of ZIPK-induced contraction to various kinase inhibitors was similar to the in vitro sensitivity of purified ZIPK to these inhibitors. Staurosporine was the most effective ZIPK inhibitor, with a Ki value calculated to be 2.6 +/- 0.3 micromol/L. Through the use of specific kinase inhibitors, we determined that Rho-associated protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C) do not mitigate ZIPK-induced contraction in ileum. Our findings support a role for ZIPK in Ca2+-independent contractile force generation in gastrointestinal smooth muscle.  相似文献   

12.
Histamine stimulation of swine arterial smooth muscle is associated with a high [Ca2+]i sensitivity for increases in myosin light-chain phosphorylation. In contrast, KCl depolarization produces a relatively lower [Ca2+]i sensitivity (i.e., similar increases in [Ca2+]i induce less myosin phosphorylation). We evaluated whether 1) artifacts in the methodology for measuring [Ca2+]i or 2) true alterations in the [Ca2+]i sensitivity of myosin light-chain kinase were responsible for these apparent changes in the [Ca2+]i sensitivity of phosphorylation. The [Ca2+]i sensitivity of phosphorylation was higher with histamine stimulation regardless of whether the [Ca2+]i indicator was aequorin (which was loaded intracellularly by reversible hyperpermeabilization) or Fura 2 (which was loaded intracellularly by incubation of the tissues in Fura 2 AM). Aequorin and Fura 2 appeared to detect qualitatively similar stimulus-induced changes in [Ca2+]i with the exception that the initial response to histamine stimulation was different (histamine initially induced a large aequorin light transient and a relatively smaller increase in Fura 2 fluorescence). The [Ca2+]i sensitivity of myosin light-chain kinase extracted from KCl depolarized tissues was lower than the [Ca2+]i sensitivity of myosin light-chain kinase extracted from unstimulated or histamine stimulated tissues. These results suggest that depolarization specifically modifies myosin light-chain kinase to decrease its [Ca2+]i sensitivity. Changes in the [Ca2+]i sensitivity of myosin light-chain phosphorylation are not an artifact of the [Ca2+]i measurement technique.  相似文献   

13.
A model is presented that highlights the principal factors determining the form and extent of contraction in arteries upon stimulation of their sympathetic nerve supply. This model incorporates a previous quantitative model of the process of noradrenaline (NAd) diffusion into the vascular media and reuptake into sympathetic varicosities during nerve stimulation (J. Theor. Biol. 226 (2004) 359). It is also dependent on a model of how the subsequent activation of metabotropic receptors initiates a G-protein cascade, resulting in the production of inositol trisphosphate (IP3) and an increase in intracellular calcium concentration, [Ca2+]i, in the smooth muscle cells (J. Theor. Biol. 223 (2003) 93). In the present work we couple this rise in [Ca2+]i to the increase in phosphorylated myosin bound to actin in the cells and hence determine the force development in arteries due to nerve stimulation. The model accounts for force development as a function of [Ca2+]i and for the rate of change of force as a function of the rate of change of [Ca2+]i in single smooth muscle cells. It also accounts for the characteristic time course of the force developed by the media of the rat-tail artery upon nerve stimulation. This consists of a rapid rise to a transient peak followed by a sustained plateau of contraction during the stimulation period, after which the contraction slowly decays back to baseline at a rate dependent on the strength of the stimulation. The model indicates that the transient peak is primarily due to the partial block of the IP3 receptor by the rise in [Ca2+]i and that the main determinant of the equilibrium condition indicated by the plateau phase is the rate of pumping of calcium into the sarcoplasmic reticulum. The relatively slow decline of contraction at the end of nerve stimulation is primarily a consequence of the slow rates of removal of NAd from the media by diffusion and reuptake into the sympathetic varicosities. The model thus provides a quantitative account of vascular smooth muscle contraction upon sympathetic nerve stimulation.  相似文献   

14.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

15.
The effects of isoproterenol on intracellular calcium concentration   总被引:9,自引:0,他引:9  
beta-Adrenergic agonist, isoproterenol (ISO), is a potent relaxant of tracheal smooth muscle and inhibits carbachol-induced contraction. The effect of ISO on intracellular free Ca2+ concentration ([Ca2+]i) was examined in bovine tracheal smooth muscle strips, employing aequorin as Ca2+ indicator. Surprisingly, 10 microM ISO induces a 5-fold increase in [Ca2+]i which then gradually declines but still remains higher than basal after 1 h of stimulation. The ISO-induced increase in [Ca2+]i is dose-dependent, and the ED50 is approximately 50 nM. The ISO-induced increase in [Ca2+]i is inhibited by a beta-receptor blocker, propranolol, not by an alpha-blocker, phentolamine. The ISO-induced rise in [Ca2+]i is dependent on extracellular Ca2+. Forskolin, an adenylate cyclase activator, and vasoactive intestinal peptide, which is known to stimulate adenylate cyclase via a specific receptor in this tissue, have similar effects on [Ca2+]i, suggesting that a rise in cyclic AMP concentration mediates this effect of ISO on [Ca2+]i. Pretreatment of muscle with 10 microM ISO inhibits both the initial Ca2+ transient and the contractile response induced by 0.3 microM carbachol. Conversely, in carbachol-pretreated muscle strips, addition of ISO causes a fall rather than a rise in [Ca2+]i, and an inhibition of contraction. These results indicate that ISO has effects on cellular Ca2+ metabolism at more than a single site in bovine tracheal smooth muscle, that these effects are different in control and carbachol-pretreated muscle, and that the relaxing effect of ISO is not due solely to its effect on Ca2+ metabolism.  相似文献   

16.
Vascular tone, an important determinant of systemic vascular resistance and thus blood pressure, is affected by vascular smooth muscle (VSM) contraction. Key signaling pathways for VSM contraction converge on phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin. This phosphorylation is mediated by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) but Ca(2+)-independent kinases may also contribute, particularly in sustained contractions. Signaling through MLCK has been indirectly implicated in maintenance of basal blood pressure, whereas signaling through RhoA has been implicated in salt-induced hypertension. In this report, we analyzed mice with smooth muscle-specific knockout of MLCK. Mesenteric artery segments isolated from smooth muscle-specific MLCK knockout mice (MLCK(SMKO)) had a significantly reduced contractile response to KCl and vasoconstrictors. The kinase knockout also markedly reduced RLC phosphorylation and developed force. We suggest that MLCK and its phosphorylation of RLC are required for tonic VSM contraction. MLCK(SMKO) mice exhibit significantly lower basal blood pressure and weaker responses to vasopressors. The elevated blood pressure in salt-induced hypertension is reduced below normotensive levels after MLCK attenuation. These results suggest that MLCK is necessary for both physiological and pathological blood pressure. MLCK(SMKO) mice may be a useful model of vascular failure and hypotension.  相似文献   

17.
Contraction of esophageal (Eso) and lower esophageal sphincter (LES) circular muscle depends on distinct signal-transduction pathways. ACh-induced contraction of Eso muscle is linked to phosphatidylcholine metabolism, production of diacylglycerol and arachidonic acid (AA), and activation of the Ca(2+)-insensitive PKCepsilon. Although PKCepsilon does not require Ca(2+) for activation, either influx of extracellular Ca(2+) or release of Ca(2+) from stores is needed to activate the phospholipases responsible for hydrolysis of membrane phospholipids and production of second messengers, which activate PKCepsilon. In contrast, the LES uses two distinct intracellular pathways: 1) a PKC-dependent pathway activated by low doses of agonists or during maintenance of spontaneous tone, and 2) a Ca(2+)-calmodulin-myosin light chain kinase (MLCK)-dependent pathway activated in response to maximally effective doses of agonists during the initial phase of contraction. The Ca(2+) levels, released by agonist-induced activity of phospholipase C, determine which contractile pathway is activated in the LES. The Ca(2+)-calmodulin-MLCK-dependent contractile pathway has been well characterized in a variety of smooth muscles. The steps linking activation of PKC to myosin light chain (MLC20) phosphorylation and contraction, however, have not been clearly defined for LES, Eso, or other smooth muscles. In addition, in LES circular muscle, a low-molecular weight pancreatic-like phospholipase A2 (group I PLA2) causes production of AA, which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to heterotrimeric G proteins to induce activation of phospholipases and production of second messengers to maintain contraction of LES circular muscle. We have examined the signal-transduction pathways activated by PGF(2alpha) and by thromboxane analogs during the initial contractile phase and found that these pathways are the same as those activated by other agonists. In response to low doses of agonists or during maintenance of tone, presumably due to low levels of calcium release, a PKC-dependent pathway is activated, whereas at high doses of PGF(2alpha) and thromboxane analogs, in the initial phase of contraction, calmodulin is activated, PKC activity is reduced, and contraction is mediated, in part, through a Ca(2+)-calmodulin-MLCK-dependent pathway. The PKC-dependent signaling pathways activated by PGF(2alpha) and by thromboxanes during sustained LES contraction, however, remain to be examined, but preliminary data indicate that a distinct PKC-dependent pathway may be activated during maintenance of tonic contraction, which is different from the one activated during the initial contractile response. The initial contractile response to low levels of agonists depends on activation of G(q). Sustained contraction in response to PGF(2alpha) may involve activation of the monomeric G protein RhoA, because the contraction is inhibited by the RhoA-kinase antagonist Y27632. This shift in signal-transduction pathways between initial and sustained contraction has been recently reported in intestinal smooth muscle.  相似文献   

18.
Smooth muscle contraction is initiated by a rise in intracellular calcium, leading to activation of smooth muscle myosin light chain kinase (MLCK) via calcium/calmodulin (CaM). Activated MLCK then phosphorylates the regulatory myosin light chains, triggering cross-bridge cycling and contraction. Here, we show that MLCK is a substrate of AMP-activated protein kinase (AMPK). The phosphorylation site in chicken MLCK was identified by mass spectrometry to be located in the CaM-binding domain at Ser(815). Phosphorylation by AMPK desensitized MLCK by increasing the concentration of CaM required for half-maximal activation. In primary cultures of rat aortic smooth muscle cells, vasoconstrictors activated AMPK in a calcium-dependent manner via CaM-dependent protein kinase kinase-beta, a known upstream kinase of AMPK. Indeed, vasoconstrictor-induced AMPK activation was abrogated by the STO-609 CaM-dependent protein kinase kinase-beta inhibitor. Myosin light chain phosphorylation was increased under these conditions, suggesting that contraction would be potentiated by ablation of AMPK. Indeed, in aortic rings from mice in which alpha1, the major catalytic subunit isoform in arterial smooth muscle, had been deleted, KCl- or phenylephrine-induced contraction was increased. The findings suggest that AMPK attenuates contraction by phosphorylating and inactivating MLCK. This might contribute to reduced ATP turnover in the tonic phase of smooth muscle contraction.  相似文献   

19.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLCK containing smooth muscle MLCK fused to two fluorescent proteins linked by the MLCK CaM-binding sequence to measure kinase activation in vivo and expressed it specifically in mouse smooth muscle. In phasic bladder muscle, there was greater RLC phosphorylation and force relative to MLCK activation and [Ca(2+)](i) with carbachol (CCh) compared with KCl treatment, consistent with agonist-dependent inhibition of MLCP. The dependence of force on MLCK activity was nonlinear such that at higher concentrations of CCh, force increased with no change in the net 20% activation of MLCK. A significant but smaller amount of MLCK activation was found during the sustained contractile phase. MLCP inhibition may occur through RhoA/Rho-kinase and/or PKC with phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1) and PKC-potentiated phosphatase inhibitor (CPI-17), respectively. CCh treatment, but not KCl, resulted in MYPT1 and CPI-17 phosphorylation. Both Y27632 (Rho-kinase inhibitor) and calphostin C (PKC inhibitor) reduced CCh-dependent force, RLC phosphorylation, and phosphorylation of MYPT1 (Thr694) without changing MLCK activation. Calphostin C, but not Y27632, also reduced CCh-induced phosphorylation of CPI-17. CCh concentration responses showed that phosphorylation of CPI-17 was more sensitive than MYPT1. Thus the onset of agonist-induced contraction in phasic smooth muscle results from the rapid and coordinated activation of MLCK with hierarchical inhibition of MLCP by CPI-17 and MYPT1 phosphorylation.  相似文献   

20.
Neuropeptide Y (NPY) is released from an extensive network of postganglionic sympathetic perivascular neurons. NPY has been shown to affect vascular tone postsynaptically by 1) directly stimulating contraction; 2) inhibiting vasorelaxation; and 3) potentiating contraction elicited by exogenous vasoconstrictors. The molecular mechanisms mediating these effects of NPY are undefined. Therefore, we examined the possibility that NPY could stimulate smooth muscle contraction through myosin light chain phosphorylation in cultured porcine aortic smooth muscle cells. NPY (100 nM) caused a rapid, transient increase in myosin light chain (MLC) phosphorylation, an important regulatory event in the initiation of smooth muscle contraction. NPY-stimulated MLC phosphorylation was prevented by preincubation of cells with pertussis toxin and was independent of extracellular Ca2+. In parallel studies, NPY alone had no detectable effect on cellular cAMP or cGMP content; however, NPY potently inhibited forskolin-stimulated cAMP accumulation (IC50 = 0.03 nM) through a pertussis toxin-sensitive pathway. NPY had no detectable effect on basal phosphoinositide hydrolysis or protein kinase C activation but enhanced angiotensin II-stimulated production of inositol phosphates and activation of protein kinase C. These results indicate that NPY-stimulated MLC phosphorylation can occur in the absence of detectable changes in cAMP content, cGMP content, inositol phosphate production, or protein kinase C activation; however, the interactions between NPY and other vasoactive agents may be mediated by the indirect effects of NPY on adenylate cyclase activity and phosphoinositide hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号