首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of betamethasone (0.2 mg/kg, intramuscularly) to pregnant rabbits had the following effects on the fetal lung at 26–27 days gestation. It increased the amount of phosphatidylcholine in lung lavage by 70% and almost doubled the phosphatidylcholine/sphingomyelin ratio, it increased the rate of incorporation of choline into phosphatidylcholine in fetal lung slices by up to 90%, it increased the activities of pulmonary cholinephosphate cytidylyltransferase and phosphatidate phosphatase by 50% and it reduced the amount of lung glycogen to 60% of the amount in the controls. Betamethasone had no effect on the activities of pulmonary cholinephosphotransferase or lysolecithin: lysolecithin acyltransferase but it sligthly decreased the activity of choline kinase.Betamethasone administration to the doe did not increase the amount of surfactant phospholipid in fetal lung lavage to as great an extent as did direct administration of cortisol to the fetuses. Neither did betamethasone stimulate the activity of pulmonary cholinephosphotransferase. These data suggest that agents other than glucocorticoids mediate the stress-induced acceleration of fetal lung maturation and surfactant production.  相似文献   

2.
Previous studies have shown that secretion of phosphatidylcholine in cultured adult rat type II pneumocytes is stimulated by purinoceptor agonists and leukotrienes. The objective of the present study was to determine if such agents have a physiological role in the regulation of surfactant secretion. We chose the newborn rabbit as the experimental model, since in this system there is a marked increase in surfactant secretion immediately after birth. We examined the effects of an inhibitor of leukotriene biosynthesis, nordihydroguaiaretic acid, two leukotriene antagonists, FPL-55712 and FPL-57231, and a P1 purinoceptor antagonist, 8-phenyltheophylline, on this increase. Newborn rabbits were delivered by Cesarean section at 30 days gestation. Some animals in each litter were killed immediately, while others were injected with test agents or solvent vehicle while still in the amniotic sacs. After breathing for 3 h in an incubator, these animals were also killed. The lungs were lavaged with saline and the phospholipid content and composition of the lung lavage liquid was measured. In control animals, there was a greater than 2-fold increase in the amounts of total phospholipid and phosphatidylcholine and in the phosphatidylcholine/sphingomyelin ratio during the 3 h period of breathing. The increases in total phospholipid and phosphatidylcholine were decreased 38-62% by the antagonists, while the increase in the phosphatidylcholine/sphingomyelin ratio was decreased 61-77%. These data show that the ventilation-induced increase in secretion of lung surfactant in the newborn rabbit is inhibited by leukotriene and P1 receptor antagonists and by an inhibitor of leukotriene biosynthesis and, when taken together with the data from the tissue culture system, support a role for leukotrienes and adenosine in the physiological regulation of surfactant secretion.  相似文献   

3.
Tissue injury in inflammation involves the release of several cytokines that activate sphingomyelinases and generate ceramide. In the lung, the impaired metabolism of surfactant phosphatidylcholine (PC) accompanies this acute and chronic injury. These effects are long-lived and extend beyond the time frame over which tumor necrosis factor (TNF)-alpha and interleukin-1beta are elevated. In this paper, we demonstrate that in H441 lung cells these two processes, cytokine-induced metabolism of sphingomyelin and the inhibition of PC metabolism, are directly interrelated. First, metabolites of sphingomyelin hydrolysis themselves inhibit key enzymes necessary for restoring homeostasis between sphingomyelin and its metabolites. Ceramide stimulates sphingomyelinases as effectively as TNF-alpha, thereby amplifying the sphingomyelinase activation, and TNF-alpha, ceramide, and sphingosine all inhibit PC:ceramide phosphocholine transferase (sphingomyelin synthase), the enzyme that restores homeostasis between sphingomyelin and ceramide pools. Second, ceramide inhibits PC synthesis, probably because of its effects on CTP:phosphocholine cytidylyltransferase, the rate-limiting enzymatic step in de novo PC synthesis. The data presented here suggest that TNF-alpha may be an inhibitor of phospholipid metabolism in inflammatory tissue injury. These actions may be amplified because of the ability of metabolites of sphingomyelin to inhibit the pathways that should restore the normal ceramide-sphingomyelin homeostasis.  相似文献   

4.
The phospholipid content and composition of lung wash and lung tissue as well as the activities of the enzymes involved in the synthesis of phosphatidylcholine and phosphatidylglycerol (the major surface active components of pulmonary surfactant) were studied in the rabbit during fetal lung development. In lung wash the amount of phospholipid increased four-fold during the period 27-31 day's gestation. There was a further ten-fold increase following the onset breathing. During the same period the amount of phosphatidylcholine in lung wash increased from 29% of the total phospholipid to 80% while the amount of sphingomyelin decreased from 38% to 2%. The amount of phosphatidylcholine in lung tissue also increased during development but to a much lesser extent. During fetal lung development the activities of choline kinase and cholinephosphate cytidyltransferase changed little, cholinephosphotranserase decreased while lysophosphatidic acid acyltransferase and lysolecithin acyltransferase increased. There was a postnatal increase in the activities of cholinephosphate cytidyltransferase, cholinephosphotransferase and both acyltransferases. The amount of phosphatidylglycerol, as a percentage of the total phospholipid, in lung wash and lung tissue as well as the activity of pulmonary glycerolphosphate phosphatidyltransferase did not change appreciably during development.  相似文献   

5.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

6.
Types A and B Niemann-Pick disease (NPD) are lipid storage disorders caused by the deficient activity of acid sphingomyelinase (ASM). In humans, NPD is associated with the dysfunction of numerous organs including the lung. Gene targeting of the ASM gene in transgenic mice produced an animal model with features typical of NPD, including pulmonary inflammation. To assess mechanisms by which ASM perturbed lung function, we studied lung morphology, surfactant content, and metabolism in ASM-deficient mice in vivo. Pulmonary inflammation, with increased cellular infiltrates and the accumulation of alveolar material, was associated with alterations in surfactant content. Saturated phosphatidylcholine (SatPC) content was increased twofold, and sphingomyelin content was increased 5.5-fold in lungs of the ASM knockout (ASMKO) mice. Additional sphingomyelin enhanced the sensitivity of surfactant inhibition by plasma proteins. Clearance of SatPC from the lungs of ASMKO mice was decreased. Catabolism of SatPC by alveolar macrophages from the ASMKO mouse was significantly decreased, likely accounting for decreased pulmonary SatPC in vivo. In summary, ASM is required for normal surfactant catabolism by alveolar macrophages in vivo. Alterations in surfactant composition, including increased sphingomyelin content, contributed to the abnormal surfactant function observed in the ASM-deficient mouse.  相似文献   

7.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

8.
Septic shock in rats lead to pulmonary disorders associated with alterations of phospholipid metabolism. The ratio between phosphatidylcholine and lysophosphatidylcholine is lowered both in lung tissue and in pulmonary surfactant because enzymes of phosphatidylcholine remodeling mechanism are distinctly affected by septic shock. Specific activity of phospholipase A2 is enhanced 5-fold while specific activities of lysolecithin acyltransferase and lysolecithin : lysolecithin acyltransferase are only slightly increased or remain unchanged. Beyond that, palmitic acid content of lung tissue phosphatidylcholine is significantly reduced and replaced mainly by arachidonic acid. The release of this fatty acid by action of phospholipase A2 may lead via intermediates to the generation of potent mediators such as prostaglandins, thromboxane or slow-reacting substance.  相似文献   

9.
It has been previously reported that fasting may result in decreased lung surfactant production. In order to investigate this relationship and the role of nutrition in lung phospholipid synthesis, 21-day-old rats were exposed for 60 h to one of five dietary regimens: standard rat chow (controls), fasting, pure glucose, pure fat, or pure protein. After the period of fasting there was a 33% decrease in lung protein content, but there was no change in DNA content. Exposure to any of the experimental diets resulted in a decrease in tissue total phospholipid and phosphatidylcholine content per lung, but not per unit lung protein. Similarly lung lavage phospholipid and phosphatidylcholine content was decreased by 25% after fasting when expressed per lung or per unit DNA, but not per unit protein. Pulmonary cholinephosphotransferase (EC 2.7.8.2) activity was decreased in the fasted animals and those fed the protein diet, but not in the glucose or fat-fed animals. The activities of acetyl-CoA carboxylase (EC 6.4.1.2) and microsomal fatty acid elongation were decreased in all the experimental groups except for the glucose-fed group. It is concluded that fasting results in a decrease in lung cell size but not in lung cell number. Total phospholipid and phosphatidylcholine content in lung tissue and lung lavage is decreased per cell but not per unit cell mass.  相似文献   

10.
Cholesterol and phospholipid content, and phospholipid composition (sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethaolamine) were assayed in rat liver microsomes during regeneration, foetal development and pregnancy. Cholesterol was assayed using Liebermann-Buchard reagent; the phospholipid extract was separated by thin-layer chromatography. While in pregnancy no changes were observed, during foetal development and liver regeneration there was a significative decrease of cholesterol/phospholipid ratio, and of phosphatidylcholine content. Moreover, in developing liver microsomes, there is also a significative increase of sphingomyelin and phosphatidylserine + phosphatidylinositol.  相似文献   

11.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

12.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

13.
The effect of human urogastrone on lung phospholipids in fetal rabbits   总被引:2,自引:0,他引:2  
Previous in vivo studies have demonstrated that mouse epidermal growth factor (EGF) can enhance fetal lung maturation. We have examined the effect of urogastrone, the human equivalent of mouse EGF and a related growth factor, on the phospholipid profile of fetal rabbit lung lavage and its action on fetal rabbit Type II pneumocytes in culture. Urogastrone (1 or 8 micrograms) given i.p. to fetal rabbits on day 25 of gestation resulted in increased total phospholipid, phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine contents, increased phosphatidylinositol and phosphatidylethanolamine as a proportion of phospholipid and decreased sphingomyelin as a proportion of phospholipid in lung lavages on day 28. These changes were unaccompanied by alterations in body weight or lung weight, DNA or protein concentrations. Urogastrone (16 micrograms) resulted in increased fetal deaths. Phospholipid profiles on day 27 were unchanged after fetal administration of urogastrone (1 microgram) on day 25. Urogastrone (0.01 and 0.1 ng/ml) added to fetal rabbit Type II pneumocytes in culture for 24 h enhanced the incorporation of radiolabelled choline and thymidine into phosphatidylcholine and DNA respectively. These findings indicate that human urogastrone can alter the phospholipid composition of the rabbit lung in a similar manner to that which occurs during maturation of the lung surfactant system in late pregnancy. This effect can be achieved, at least in part, by a direct action on Type II pneumocytes.  相似文献   

14.
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.  相似文献   

15.
The peculiarities and conditions of optimal gas exchange for arresting hypoxia during prolonged (3 hours) apnoea or bradypnoea were experimentally studied in 34 dogs, using the method of apnoea oxygenation and extrapulmonary membrane removal of CO2 on "Sever" membrane gas-exchanger. It was shown that successful arrest of severe ventilation disorders of respiration by this method depends on precise registration and skillful use of the factors influencing oxygenation and CO2 removal in membrane gas-exchanger connected with peripheral arteriovenous or venovenous shunts.  相似文献   

16.
Endotracheal phthorothan anesthesia without any surgical intervention in rabbits for 3.5 hours diminished the surface active properties of the surfactant by increasing the surface tension of the lung washings measured on the Wilhelmy scales. A study of phospholipid fractions in the lung washings by means of the thin-layer chromatography on silicagel showed a decrease of one of the major structures of the surfactant lipoprotein, phosphatidylcholine, with a simultaneous increase of the lysophosphatidylcholine. Determination of the free fatty acid content in the lung washings after the action of phthorothan anesthesia showed their significant increase as compared with control. A possible mechanism of the damaging effect of phthorothan anesthesia on the lung surfactant is discussed.  相似文献   

17.
Cholesterol in human bile is solubilized in micelles by (relatively hydrophobic) bile salts and phosphatidylcholine (unsaturated acyl chains at sn-2 position). Hydrophilic tauroursodeoxycholate, dipalmitoyl phosphatidylcholine, and sphingomyelin all decrease cholesterol crystal-containing zones in the equilibrium ternary phase diagram (van Erpecum, K. J., and M. C. Carey. 1997. Biochim. Biophys. Acta. 1345: 269-282) and thus could be valuable in gallstone prevention. We have now compared crystallization in cholesterol-supersaturated model systems (3.6 g/dl, 37 degrees C) composed of various bile salts as well as egg yolk phosphatidylcholine (unsaturated acyl chains at sn-2 position), dipalmitoyl phosphatidylcholine, or sphingomyelin throughout the phase diagram. At low phospholipid contents [left two-phase (micelle plus crystal-containing) zone], tauroursodeoxycholate, dipalmitoyl phosphatidylcholine, and sphingomyelin all enhanced crystallization. At pathophysiologically relevant intermediate phospholipid contents [central three-phase (micelle plus vesicle plus crystal-containing) zone], tauroursodeoxycholate inhibited, but dipalmitoyl phosphatidylcholine and sphingomyelin enhanced, crystallization. Also, during 10 days of incubation, there was a strong decrease in vesicular cholesterol contents and vesicular cholesterol-to-phospholipid ratios (approximately 1 on day 10), coinciding with a strong increase in crystal mass. At high phospholipid contents [right two-phase (micelle plus vesicle-containing) zone], vesicles were always unsaturated and crystallization did not occur. Strategies aiming to increase amounts of hydrophilic bile salts may be preferable to increasing saturated phospholipids in bile, because the latter may enhance crystallization.  相似文献   

18.
Only few data are available on the effect of training on phospholipid metabolism in skeletal muscles. The aim of the present study was to examine the effect of 6 weeks of endurance training on the content of particular phospholipid fractions and on the incorporation of blood-borne [14C]-palmitic acid into the phospholipids in different skeletal muscles (white and red sections of the gastrocnemius, the soleus and the diaphragm) of the rat. Lipids were extracted from the muscles and separated using thin-layer chromatography into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, cardiolipin and neutral lipids (this fraction being composed mostly of triacylglycerols). It was found that training did not affect the content of any phospholipid fraction in soleus muscle. It increased the content of sphingomyelin in white gastrocnemius muscle, cardiolipin and phosphatidylethanolamine in red gastrocnemius muscle and phosphatidylinositol in white gastrocnemius muscle and diaphragm. The total phospholipid content in red gastrocnemius muscle of the trained group was higher than in the control group. Training reduced the specific activity of sphingomyelin and cardiolipin in all muscles, phosphatidylcholine in soleus, red, and white gastrocnemius muscles, phosphatidylserine in all muscles, phosphatidylinositol in all except the soleus muscle, and phosphatidylethanolamine in hindleg muscles, but not in the diaphragm compared to the corresponding values in the sedentary group. It was concluded that endurance training affects skeletal muscle phospholipid content and the rate of incorporation of the blood-borne [14C]palmitic acid into the phospholipid moieties.  相似文献   

19.
Mixed micelle formation of the polydisperse nonionic surfactant Triton X-100 as well as its homogeneous analogue, p-(1,1,3,3-tetramethylbutyl)-phenoxynonaoxyethylene glycol (OPE-9), with bovine brain sphingomyelin or dipalmitoyl phosphatidylcholine has been characterized by column chromatography on 6% agarose. At 40 degrees C, mixtures of OPE-9 and either sphingomyelin or dipalmitoyl phosphatidylcholine give a narrow size distribution for mixed micelles. A this temperature the size distribution of Triton X-100-containing mixed micelles is complicated because of the polydispersity of the oxyethylene chains. At 20 degrees C narrow size distributions are observed for mixed micelles of sphingomyelin/Triton X-100 and sphingomyelin/OPE-9 up to at least 0.06 mol fraction of lipid. For dipalmitoyl phosphatidylcholine this is observed only with OPE-9. At intermediate mol fractions of lipid (around 0.25), two populations of mixed micelles exist for sphingomyelin/Trition X-100, sphingomyelin/OPE-9, and dipalmitoyl phosphatidylcholine/OPE-9. At high mol fractions of lipid only one population of mixed micelles again exists. At 20 degrees C, sphingoymelin forms a clear solution with Triton X-100 and OPE-9 to a lipid mol fraction of at least 0.46 and 0.67, respectively. Dipalmitoyl phosphatidylcholine forms a clear solution with OPE-9 to a lipid mol fraction of at least 0.57 at the same temperature. Triton X-100 and dipalmitoyl phosphatidylcholine do not form stable, clear solutions at 20 degrees C unless the lipid mol fraction is extremely low. These results show that surfactant polydispersity and temperature are important determinants in the solubilization of lipids by nonionic surfactants. It is also shown that pure surfactant micelles and lipid/surfactant mixed micelles do not co-exist in the same solution.  相似文献   

20.
Organotypic cultures of fetal type II epithelial cells were incubated in media containing insulin at concentrations ranging from 10 to 400 microunits/ml. Exposure to insulin resulted in increased glucose uptake from the media and in the rate of glucose conversion to CO2. Furthermore, both glucose uptake and CO2 production were dependent on the glucose concentration in the media. Surfactant and residual phosphatidylcholine fractions were isolated from the organotypic cultures by sucrose density centrifugation. The presence of low doses of insulin (10-25 microunits/ml) caused a significant increase in the incorporation of glucose into both surfactant and residual phosphatidylcholine. Insulin at levels of 100 microunits/ml or higher resulted in a significant decrease in glucose incorporation into both phosphatidylcholine fractions. Increasing the media glucose concentration from 5.6 to 20 mM caused a 2- to 2.5-fold increase in glucose utilization for surfactant and residual phospholipid synthesis, but did not produce any significant changes in choline incorporation into either surfactant or residual phosphatidylcholine. The addition of 400 microunits/ml of insulin to media containing 20 mM glucose, however, resulted in a 20% decrease in choline incorporation into surfactant phosphatidylcholine but had no effect on choline incorporation into residual phosphatidylcholine. These results suggest that insulin is an important hormone regulating fetal lung maturation and that hyperinsulinemia may be responsible for the delayed lung development in infants of diabetic mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号