首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible mutagenic activity of lead chromate in mammalian cells was studied using assays for chromosome aberrations and sister-chromatid exchanges in cultured human lymphocytes, and DNA fragmentation as detected by alkaline-sucrose gradient sedimentation in cultured Chinese hamster ovary (CHO) cells. Lead chromate caused dose-related increases in chromosome aberration and sister-chromatid exchange in human lymphocytes. No increase in DNA damage was observed in CHO cells, possibly due to the relative insensitivity of the CHO cells and the limited solubility of lead chromate in tissue culture medium. The mutagenicity of lead chromate in human lymphocytes appears to be entirely due to the chromate ion since chromosome aberrations were induced by potassium chromate but not lead chloride.  相似文献   

2.
The potential mutagenicity of the carcinogen lead chromate was tested by the following battery of microbial tests: the Escherichia coli PolA+/PolA- survival test; the Salmonella/microsome His+ reversion assay; the E. coli Trp+ reversion test as a plate assay; the E. coli Gal+ forward mutation test; and the Saccharomyces cerevisiae assay for mitotic recombination. Lead chromate is mutagenic in Salmonella and in Saccharomyces and is thus identified as a microbial mutagen by this battery. Metabolic activation by rat liver homogenate (S9) is not required for the mutagenic activity of lead chromate. The most statistically significant, positive result is found with a supplementary assay, the E. coli fluctuation test. To determine whether the lead ion and/or the chromate ion were responsible for the mutagenicity observed, lead chloride and chromium trioxide (chromic acid) were also tested. In E. coli fluctuation test, the ranges of maximal mutagenicity for chromium trioxide and lead chromate overlap at the concentration 10(-5)M, whereas lead chloride shows no mutagenicity and little lethality at concentrations up to 10(-3)M. Thus, it appears that the chromate ion is responsible for the mutagenicity of lead chromate.  相似文献   

3.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter(-1) and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a K(m) of 23 mg liter(-1) (437 microM) and a V(max) of 0.98 mg of Cr h(-1) mg of protein(-1) (317 nmol min(-1) mg of protein(-1)). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

4.
Several insoluble compounds of chromium, such as lead chromate, are respiratory carcinogens in experimental animals and suspected to be so in humans. Lead chromate induces neoplastic transformation in cultured cells but the mechanism of genotoxicity is unknown. We examined the effect of lead chromate on the integrity of chromosomes of Chinese hamster ovary (CHO) and human foreskin fibroblasts (HFF) after a 24-h exposure. At 0.4 microgram/cm2, 0.8 microgram/cm2, 2 microgram/cm2 and 8 microgram/cm2 lead chromate particles reduced survival of CHO cells to 86%, 62%, 2% and less than 1% respectively. These concentrations induced a dose-dependent 4-19-fold increase in the percent metaphases with damage. The HFF cells exhibited higher sensitivity in both cytotoxicity and clastogenicity. The spectrum of damage observed for both cell types was primarily achromatic lesions affecting one or both chromatids. To test for particle dissolution effects, CHO cells were treated for 24 h with either clarified medium that had been incubated for 24 h with lead chromate particles, or clarified medium that had been pre-conditioned by CHO cells treated with lead chromate particles for 24 h. No damage was detected in these cells, indicating that extracellular dissolution into ionic lead and chromate did not contribute to the genotoxicity. This is consistent with a previous study in which scanning electron micrographs illustrated internalization of the particles. These results suggest that clastogenesis may be a mechanism for lead chromate induced carcinogenesis.  相似文献   

5.
Abstract A chromate resistant mutant of Enterobacter aerogenes manifested its chromate resistance only under aerobic conditions. Both parent and mutant showed substantial levels of anaerobic chromate reductase activity when grown on glycerol plus fumarate. The chromate reductase was further induced by growth in the presence of nitrite but was repressed by nitrate. The chromate reductase activity paralleled that of the formate-linked nitrite reductase. There was no significant difference in chromate reductase levels between the parent and its chromate resistant mutant, indicating that this enzyme activity is not, in fact responsible for chromate resistance as was suggested previously by others.  相似文献   

6.
A mixed culture of Bacillus sp. K1 and Sphingomonas paucimobilis EPA 505 was exposed to chromate and naphthalene. Batch experiments showed that chromate was reduced and naphthalene was degraded by the mixed culture. Chromate reduction occurred initially at a high rate followed by a decrease in rate until chromate reduction ceased. Chromate reduction decreased in the mixed culture when a lower ratio of S. paucimobilis EPA 505 to Bacillus sp. K1 was utilized. A kinetic model incoporating a term for the cell density ratio is proposed to describe chromate reduction in the mixed culture under both chromate limited and electron donor limited conditions. The validity of the model, and its parameter values, was verified by experimental data generated under a variety of initial population compositions and a broad range of chromate concentrations. The consistent result of experimental data with model predictions implies that the model is useful for evaluating the interactions and the use of mixed culture for chromate removal. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
Mechanisms of chromium toxicity in mitochondria   总被引:2,自引:0,他引:2  
The oxygen consumption of isolated rat heart mitochondria was potently depressed in presence of 10-50 microM Na2CrO4 when NAD-linked substrates were oxidized. The succinate stimulated respiration and the oxidation of exogeneous NADH in sonicated mitochondria were not affected by chromate at this concentration range. A rapid and persistent drop (40% in 2 min) in the mitochondrial NADH level was observed after chromate addition (30 microM) under conditions which generally should promote regeneration of NADH. Experiments with bis-(2-ethyl-2-hydroxybutyrato)oxochromate(V) and vanadyl induced reduction of Cr(VI) in presence of excess NADH were performed. These experiments indicated that NADH may be directly oxidized by Cr(V) at physiological pH. The activity of 10 different enzymes were measured after lysis of intact mitochondria pretreated with chromate (1-100 microM). Na2CrO4 at a very low level (3-5 microM) was sufficient for 50% inhibition of alpha-ketoglutarate dehydrogenase. Higher concentrations (20-70 microM) was necessary for similar effect on beta-hydroxybutyrate and pyruvate dehydrogenase. The other enzymes tested were unaffected. Thus, the chromate toxicity in mitochondria may be due to NADH depletion as a result of direct oxidation by Cr(V) as well as reduced formation of NADH due to specific enzyme inhibition.  相似文献   

8.
Bacteria can reduce toxic and carcinogenic Cr(VI) to insoluble and less toxic Cr(III). Thermus scotoductus SA-01, a South African gold mine isolate, has been shown to be able to reduce a variety of metals, including Cr(VI). Here we report the purification to homogeneity and characterization of a novel chromate reductase. The oxidoreductase is a homodimeric protein, with a monomer molecular mass of approximately 36 kDa, containing a noncovalently bound flavin mononucleotide cofactor. The chromate reductase is optimally active at a pH of 6.3 and at 65 degrees C and requires Ca(2+) or Mg(2+) for activity. Enzyme activity was also dependent on NADH or NADPH, with a preference for NADPH, coupling the oxidation of approximately 2 and 1.5 mol NAD(P)H to the reduction of 1 mol Cr(VI) under aerobic and anaerobic conditions, respectively. The K(m) values for Cr(VI) reduction were 3.5 and 8.4 microM for utilizing NADH and NADPH as electron donors, respectively, with corresponding V(max) values of 6.2 and 16.0 micromol min(-1) mg(-1). The catalytic efficiency (k(cat)/K(m)) of chromate reduction was 1.14 x 10(6) M(-1) s(-1), which was >50-fold more efficient than that of the quinone reductases and >180-fold more efficient than that of the nitroreductases able to reduce Cr(VI). The chromate reductase was identified to be encoded by an open reading frame of 1,050 bp, encoding a single protein of 38 kDa under the regulation of an Escherichia coli sigma(70)-like promoter. Sequence analysis shows the chromate reductase to be related to the old yellow enzyme family, in particular the xenobiotic reductases involved in the oxidative stress response.  相似文献   

9.
Resistance to toxic hexavalent chromium (chromate: CrO4(2)) in Enterobacter cloacae strain HO1, isolated from an activated sludge sample, was investigated under aerobic and anaerobic conditions. Decreased uptake of 51CrO4(2-) in E. cloacae strain HO1 was observed under aerobic conditions, when compared with a standard laboratory E. cloacae strain (IAM 1624). Under anaerobic conditions E. cloacae strain HO1 was able to reduce hexavalent chromium to the less toxic trivalent form. When E. clocacae strain HO1 was grown with nitrate anaerobically, the cells were observed to lose simultaneously their chromate-reducing ability and chromate-resistance under anaerobic conditions.  相似文献   

10.
An Enterobacter cloacae strain (HO1) capable of reducing hexavalent chromium (chromate) was isolated from activated sludge. This bacterium was resistant to chromate under both aerobic and anaerobic conditions. Only the anaerobic culture of the E. cloacae isolate showed chromate reduction. In the anaerobic culture, yellow turned white with chromate and the turbidity increased as the reduction proceeded, suggesting that insoluble chromium hydroxide was formed. E. cloacae is likely to utilize toxic chromate as an electron acceptor anaerobically because (i) the anaerobic growth of E. cloacae HO1 accompanied the decrease of toxic chromate in culture medium, (ii) the chromate-reducing activity was rapidly inhibited by oxygen, and (iii) the reduction occurred more rapidly in glycerol- or acetate-grown cells than in glucose-grown cells. The chromate reduction in E. cloacae HO1 was observed at pH 6.0 to 8.5 (optimum pH, 7.0) and at 10 to 40°C (optimum, 30°C).  相似文献   

11.
A method is described whereby sedimentation velocity is combined with equilibrium dialysis to determine the net charge (valence) of a protein by using chromate as an indicator ion for assessing the extent of the Donnan redistribution of small ions. The procedure has been used in experiments on bovine serum albumin under slightly alkaline conditions (pH 8.0, I 0.05) to illustrate its application to a system in which the indicator ion and protein both bear net negative charge and on lysozyme under slightly acidic conditions (pH 5.0, I 0.10) to illustrate the situation where chromate is a counterion.  相似文献   

12.
The potential mutagenicity of the carcinogen lead chromate was tested by the following battery of microbial tests: the Escherichia coli PolA+/PolA survival test; the Salmonella/microsome His+ reversion assay; the E. coli Trp+ reversion test as a plate assay; the E. coli Gal+ forward mutation test; and the Saccharomyces cerevisiae assay for mitotic recombination. Lead chromate is mutagenic in Salmonella and in Saccharomyces and is thus identified as a microbial mutagen by this battery. Metabolic activation by rat liver homogenate (S9) is not required for the mutagenic activity of lead chromate. The most statistically significant, positive result is found with a supplementary assay, the E. coli fluctuation test. To determine whether the lead ion and/or the chromate ion were responsible for the mutagenicity observed, lead chloride and chromium trioxide (chromic acid) were also tested. In E. coli fluctuation tests, the ranges of maximal mutagenicity for chromium trioxide and lead chromate overlap at the concentration 10−5 M, whereas lead chloride shows no mutagenicity and little lethality at concentrations up to 10−3 M. Thus, it appears that the chromate ion is responsible for the mutagenicity of lead chromate.  相似文献   

13.
The growth and Cr(VI) reduction by Shewanella oneidensis MR-1 was examined using a mini-bioreactor system that independently monitors and controls pH, dissolved oxygen (DO), and temperature for each of its 24, 10-mL reactors. Independent monitoring and control of each reactor in the cassette allows the exploration of a matrix of environmental conditions known to influence S. oneidensis chromium reduction. S. oneidensis MR-1 grew in minimal medium without amino acid or vitamin supplementation under aerobic conditions but required serine and glycine supplementation under anaerobic conditions. Growth was inhibited by DO concentrations >80%. Lactate transformation to acetate was enhanced by low concentration of DO during the logarithmic growth phase. Between 11 and 35 degrees C, the growth rate obeyed the Arrhenius reaction rate-temperature relationship, with a maximum growth rate occurring at 35 degrees C. S. oneidensis MR-1 was able to grow over a wide range of pH (6-9). At neutral pH and temperatures ranging from 30 to 35 degrees C, S. oneidensis MR-1 reduced 100 microM Cr(VI) to Cr(III) within 20 min in the exponential growth phase, and the growth rate was not affected by the addition of chromate; it reduced chromate even faster at temperatures between 35 and 39 degrees C. At low temperatures (<25 degrees C), acidic (pH < 6.5), or alkaline (pH > 8.5) conditions, 100 microM Cr(VI) strongly inhibited growth and chromate reduction. The mini-bioreactor system enabled the rapid determination of these parameters reproducibly and easily by performing very few experiments. Besides its use for examining parameters of interest to environmental remediation, the device will also allow one to quickly assess parameters for optimal production of recombinant proteins or secondary metabolites.  相似文献   

14.
The chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505 was cloned into broad-host-range vector pSUP104. The hybrid plasmid containing an 11.1-kilobase insert conferred chromate resistance and reduced uptake of chromate in P. aeruginosa PAO1. Resistance to chromate was not expressed in Escherichia coli. Contiguous 1.6- and 6.3-kilobase HindIII fragments from this plasmid hybridized to pUM505 but not to P. aeruginosa chromosomal DNA and only weakly to chromate resistance plasmids pLHB1 and pMG6. Further subcloning produced a plasmid with an insert of 2,145 base pairs, which was sequenced. Analysis of deletions revealed that a single open reading frame was sufficient to determine chromate resistance. This open reading frame encodes a highly hydrophobic polypeptide, ChrA, of 416 amino acid residues that appeared to be expressed in E. coli under control of the T7 promoter. No significant homology was found between ChrA and proteins in the amino acid sequence libraries, but 29% amino acid identity was found with the ChrA amino acid sequence for another chromate resistance determinant sequenced in this laboratory from an Alcaligenes eutrophus plasmid (A. Nies, D. Nies, and S. Silver, submitted for publication).  相似文献   

15.
The response of the carotenoidless Rhodobacter sphaeroides mutant R26 to chromate stress under photosynthetic conditions is investigated by biochemical and spectroscopic measurements, proteomic analysis and cell imaging. Cell cultures were found able to reduce chromate within 3-4?days. Chromate induces marked changes in the cellular dimension and morphology, as revealed by atomic force microscopy, along with compositional changes in the cell wall revealed by infrared spectroscopy. These effects are accompanied by significant changes in the level of several proteins: 15 proteins were found up-regulated and 15 down-regulated. The protein content found in chromate exposed cells is in good agreement with the biochemical, spectroscopic and microscopic results. Moreover at the present stage no specific chromate-reductase could be found in the soluble proteome, indicating that detoxification of the pollutant proceeds via aspecific reductants.  相似文献   

16.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter−1 and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a Km of 23 mg liter−1 (437 μM) and a Vmax of 0.98 mg of Cr h−1 mg of protein−1 (317 nmol min−1 mg of protein−1). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

17.
The development of an amperometric enzyme-based sensor for chromate (CrO(4)(2-)) quantification in ground waters was investigated. Crucial physical and chemical factors characterising ground waters were tested for their influence or interference on chromate quantification: pH (7.6-8.5), temperature (9-25 degrees C), ionic strength (0-0.2M), oxygen, metals, bicarbonate and sulphate. The biosensor's response was dependent on temperature and pH as sensitivity increased with temperature and was higher at pH 7.6 than at pH 8.5. Sensitivity decreased with ionic strength until 0.1M, and was stable for higher values. Dissolved oxygen did not allow chromate quantification when it was present, but O(2) could be eliminated by adding Na(2)SO(3) or bubbling nitrogen gas into the solution. Bicarbonate did not interfere with chromate quantification by the biosensor. Sulphate was detected with a detection threshold 80 times higher than that of chromate and a lower sensitivity. Several metals (V(V), W(VI), Mn(VII), Mo(VI)) similar to chromate due to their oxidative properties and structure (oxyanions) were tested as possible interfering compounds. The sensitivity of the biosensor for these metals was low and the detection level was 30 times higher than that of chromate. These metal concentrations are usually weaker than chromate concentration in polluted ground waters so that dilution of the sample should allow chromate quantification by the biosensor. This study shows that the cytochrome c(3)-based sensor can detect compounds other than chromate but with a lower sensitivity. Although non-specific for the detection of chromate, it can however be adapted and used for the quantification of chromate in ground waters containing low sulphate concentration.  相似文献   

18.
DNA damage and DNA repair in cultured human cells exposed to chromate   总被引:1,自引:0,他引:1  
DNA damage and DNA repair have been observed in cultured human skin fibroblasts exposed to potassium chromate but not to a chromic glycine complex. DNA repair synthesis (unscheduled incorporation of [3H]thymidine (TdR)) was measured in cells during or following exposure to chromate and was significant for chromate concentrations above 10(-6) M. Maximal DNA repair was observed at about 10(-4) M chromate. DNA repair capacity was found to be saturated at this concentration. Chromate was stable for at least 8 h in culture medium and produced approximately a linear increase in repair with duration of exposure. DNA damage as determined by alkaline sucrose gradient sedimentation was detected after treatment for 1.5 h with 5 . 10(-4) M chromate. Exposure to 10(-7) M chromate solution for 7 days inhibited colony formation while acute (1 h) treatment was toxic at 5 . 10(-6) M. The chromic glycine complex was toxic above 10(-3) M for a 1-week exposure but was not observably toxic after a 1-h treatment. These results indicate that chromate and not chromic compounds may be the carcinogenic form for man. The nature of the ultimate carcinogen is discussed. These findings illustrate the utility of the DNA repair technique to study the effects on human cells of inorganic carcinogens and mutagens.  相似文献   

19.
Studies were carried out on the growth of Chromatium sp. on seafood wastewater (SFWW), which under facultative conditions and light exposure produced red pigment. The strain grew and utilized organic matter in both dark and light exposure conditions, but it produced red pigment when exposed to light. The growth was repressed by aerobic condition. The red color intensity was reduced by about 32.5+/-1.5 and 70.8+/-2.8% when kept under dark and static conditions, or aerobic and light exposure conditions, respectively. The COD of SFWW and the number of cells of Chromatium sp. were also rapidly reduced by about 78.6+/-2.7 and 92.0+/-1.0%, respectively, under aerobic and light exposure condition. KNO3 and FeCl3 also reduced red color intensity and maximum removal of organic matter and red color were 30 and 4 mg/l, respectively. Aerobic conditions increased the color removal efficiency with 30 mg/l KNO3 and 4 mg/l FeCl3 treatments up to 96.5+/-1 and 98.9+/-1%, respectively.  相似文献   

20.
Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. It is currently a major public health concern, there is widespread exposure to it in occupational settings and to the general public. However, despite the potential widespread exposure and the fact that the lung is its target organ, few studies have considered the toxic effects of particulate Cr(VI) in human lung cells. Accordingly, we used lead chromate as a model particulate Cr(VI) compound and determined its cytotoxicity and genotoxicity in cultured human bronchial epithelial cells, using BEP2D cells as a model cell line. We found that lead chromate induced concentration-dependent cytotoxicity in BEP2D cells after a 24 h exposure. Specifically, the relative survival was 78, 59, 53, 46 and 0% after exposure to 0.5, 1, 5, 10 and 50 μg/cm2 lead chromate, respectively. Similarly, the amount of chromosome damage increased with concentration after 24 h exposure to lead chromate. Specifically, 0.5, 1, 5 and 10 μg/cm2 damaged 10, 13, 20 and 28% of metaphase cells with the total amount of damage reaching 11, 15, 24 and 36 aberrations per 100 metaphases, respectively. Lead chromate (50 μg/cm2 lead chromate) induced profound cell cycle delay and no metaphases were found. In addition we investigated the effects of soluble hexavalent chromium, sodium chromate, in this cell line. We found that 1, 2.5, 5 and 10 μM sodium chromate induced 66, 35, 0 and 0% relative survival, respectively. The amount of chromosome damage increased with concentration after 24 h exposure to sodium chromate. Specifically, 1, 2.5 and 5 μM damaged 25, 34 and 41% of metaphase cells with the total amount of damage reaching 33, 59 and 70 aberrations per 100 metaphases, respectively. Ten micromolar sodium chromate induced profound cell cycle delay and no metaphases were found. Overall the data clearly indicate that hexavalent Cr(VI) is cytotoxic and genotoxic to human lung epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号