首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The detection and identification of microorganisms is being carried out increasingly using DNA. Each organism has a unique DNA sequence which can be used to distinguish closely related organisms. Using PCR amplification and sequencing of ribosomal RNA genes we have developed DNA probes for a number of pathogenic bacteria and fungi. The development of DNA assays based on PCR has resulted in new questions which must be addressed including process carry-over contamination and inhibition of the PCR amplification reaction once the problems associated with the implementation of DNA assays are ironed out.  相似文献   

2.
Myer SE  Day DJ 《BioTechniques》2001,30(3):584-8, 590, 592-3
We describe a PCR-based approach for the synthesis of circularizable ligation probes (CLiPs). CLiPs are single-stranded probes that consist of target-specific ends separated by a noncomplementary "linker" sequence. When hybridized to a target, the CLiP forms a nicked circle that may be sealed by DNA ligase only if the 5' and 3' ends show perfect Watson-Crick base pairing, thus enabling the discrimination of single nucleotide polymorphisms. Primers incorporating target sequence at their 5' end and plasmid sequence at the 3' end were used in a PCR amplification. In addition, the antisense primer was 5' labeled with biotin, and the amplification was performed in the presence of fluorescently labeled dUTP. The resulting PCR product was captured with streptavidin-coated paramagnetic beads, and the top strand, which forms the CLiP, was alkali eluted. This PCR-based method has allowed the synthesis of CLiPs that are larger and more highly labeled than has previously been possible, with ligation efficiencies similar to those of the purest chemically synthesized padlock probes. Ligations performed in the presence of cognate or mismatched sequence were analyzed by denaturing PAGE using a fluorescent DNA sequencer. Genotyping using target immobilized to nylon membranes was also performed. The CLiPs were readily able to distinguish between mutant and wild-type alleles for the common genetic disorder, 21-hydroxylase deficiency. Additionally, CLiPs of different lengths were synthesized and compared.  相似文献   

3.
Allele and genotype frequencies at the HLA-DQ alpha locus have been determined by the use of polymerase chain reaction (PCR) amplification and nonradioactive oligonucleotide probes. The probes define six alleles and 21 genotypes in a dot-blot format. A total of over 1,400 individuals from 11 populations has been typed by two different laboratories using this method. In contrast to some variable-number-of-tandem-repeat markers that have been used for identity determination, DQ alpha genotype frequencies do not deviate significantly from Hardy-Weinberg equilibrium in all populations studied. The distribution of alleles varies significantly between most of these populations. In Caucasians, the allele frequencies range from 4.3% to 28.5%. In this population, the power of discrimination is .94, and, for paternity determination, the power of exclusion is .642. These population data will allow the use of the HLA-DQ alpha marker in paternity determination, the analysis of individual identity in forensic samples, and anthropological studies.  相似文献   

4.
The allelic sequence diversity at theHLA-DQBI locus has been analyzed by polymerase chain reaction (PCR) amplification and sequencing. Fifteen amino acid sequence-defined alleles (one previously unreported) and several silent nucleotide polymorphisms which subdivide these alleles have been identified. Here, we describe the specific amplification of theDQB1 second exon by several different PCR primer pairs and a simple and rapid typing procedure using a panel of 16 horseradish peroxidase (HRP)-labeled oligonucleotide probes capable of distinguishing theseDQBI alleles.  相似文献   

5.
Non-human primates (NHPs) are increasingly utilized as models to investigate different aspects of immune responses against self (autoimmunity) and foreign antigens. These animals provide valuable models for testing the efficacy of candidate vaccines against pathogens such as human immunodeficiency virus (HIV) and also fertility regulating agents (immunocontraceptives). In order to fully understand the effects of vaccination, it may be necessary to elucidate the immunogenetic background of these animals. The major histocompatibility complex (Mhc) molecules play an important role in the generation of effective immune responses. Serological techniques have been used in the identification of human leukocyte antigens (HLA) necessary for cross-matching organs and tissues for transplantation. However, the application of this technique for typing monkey Mhc alleles has been hampered by unavailability of well characterized immunological reagents. Polymerase chain reaction (PCR)-based techniques such as restriction fragment length polymorphism (RFLP) and sequence-specific oligonucleotide probe hybridization (SSOP) have been extensively used for typing HLA-DP, DQ and DR alleles. A commercially available Kit (AmpliTypeR) designed for amplification and typing of HLA DQalpha alleles is routinely used in typing DNA samples for forensic casework. In the present study, we have evaluated this kit for possible application in routine typing of primate DQA1 alleles. Genomic DNA from ten African primate species (23 individuals) was isolated from peripheral blood lymphocytes and polymorphic second exon of DQA1 locus amplified using GH26 and GH27 PCR primers. The PCR products were hybridized on a nylon membrane containing immobilized sequence-specific oligonucleotide probes. Our results show seven of the nine probes hybridizing with primate DQA1 alleles, indicating that typing of equivalent primate alleles can be accomplished at lower stringency conditions. However, it may be necessary to design additional oligonucleotides probes (based on available primate DQA1 sequences) to improve the discriminating power of this kit for use in routine typing of Old World monkey DQA1 alleles.  相似文献   

6.
Dot-blot hybridization has been successfully used for the construction of single nucleotide polymorphism (SNP)-based linkage maps, quantitative trait locus analysis, marker-assisted selection, and the identification of species and cultivars. This method is, however, time-consuming, even for a small number of plant samples. We propose a method in which streptavidin-coated magnetic beads replace the nylon membrane for immobilization of the PCR products and are hybridized with allele-specific oligonucleotide probes and a digoxigenin-labeled oligonucleotide hybridized with the allele-specific oligonucleotide probe. After amplification of plant DNA by PCR with the biotinylated primers, those oligonucleotide probes having species-specific or allele-specific sequences were mixed together with the digoxigenin-labeled oligonucleotide and the streptavidin-coated magnetic beads at a temperature suitable for each probe. Species-specific internal transcribed spacer 1 (ITS1) sequences and allele-specific sequences of the hypervariable region I of S-locus receptor kinase (SRK) specifically detected ITS1 sequences and SRK alleles in Brassica species, respectively. SNPs were also successfully analyzed by using allele-specific oligonucleotide probes and competitive oligonucleotides. In the SNP analysis, PCR products were indirectly captured by magnetic beads. SNP alleles of eight cultivars each of Brassica rapa and Raphanus sativus were analyzed using streptavidin-coated magnetic beads. The genotyping results corresponded well with those of dot-blot-SNP analysis. Although allele-specific hybridization using streptavidin-coated magnetic beads is somewhat costly, it is easier and more rapid than dot-blot hybridization. This method is suitable for the analysis of a small number of plant samples with a large number of DNA markers.  相似文献   

7.
Previous data suggested that PCR amplification of specific alleles (also known as allele-specific amplification and amplification refractory mutation system) is not a general method for rapidly and accurately detecting known single-base changes. Herein we present our experience with the use of PCR amplification of specific alleles to detect 69 polymorphic or mutant alleles. Our results indicate that with proper optimization, all alleles were reliably distinguished.  相似文献   

8.
Fifteen million hectares of pine forests in western Canada have been attacked by the mountain pine beetle (Dendroctonus ponderosae; MPB), leading to devastating economic losses. Grosmannia clavigera and Leptographium longiclavatum, are two fungi intimately associated with the beetles, and are crucial components of the epidemic. To detect and discriminate these two closely related pathogens, we utilized a method based on ligase-mediated nucleotide discrimination with padlock probe technology, and signal amplification by hyperbranched rolling circle amplification (HRCA). Two padlock probes were designed to target species-specific single nucleotide polymorphisms (SNPs) located at the inter-generic spacer 2 region and large subunit of the rRNA respectively, which allows discrimination between the two species. Thirty-four strains of G. clavigera and twenty-five strains of L. longiclavatum representing a broad geographic origin were tested with this assay. The HRCA results were largely in agreement with the conventional identification based on morphology or DNA-based methods. Both probes can also efficiently distinguish the two MPB-associated fungi from other fungi in the MPB, as well as other related fungi in the order Ophiostomatales. We also tested this diagnostic method for the direct detection of these fungi from the DNA of MPB. A nested PCR approach was used to enrich amplicons for signal detection. The results confirmed the presence of these two fungi in MPB. Thus, the padlock probe assay coupled with HRCA is a rapid, sensitive and reproducible method for the identification and detection of these ophiostomatoid fungi.  相似文献   

9.
Previous studies have demonstrated that the genome of Onchocerca volvulus contains a variable tandemly repeated DNA sequence family with a unit length of 150 bp. The variability of the 150-bp family has been exploited to develop O. volvulus strain and species specific DNA probes. Application of these DNA probes to the study of the epidemiologically most significant life cycle stages of the parasite has been confounded by several obstacles. These include the relative insensitivity of some of the DNA probes and the difficulty in releasing genomic DNA from infective larvae and skin microfilariae in a form that may be directly detected by hybridization to the probes. DNA sequence comparison of 18 known examples of the 150-bp repeat has been used to develop two populations of degenerate oligonucleotides. These oligonucleotides have been shown to support the amplification of the 150-bp repeat family from Onchocerca DNA, using the polymerase chain reaction. Both strain and species specific members of the repeat family are faithfully amplified, allowing characterization of a parasite on the basis of hybridization of the PCR amplification products to the previously developed DNA probes. This method is shown to be applicable to all diagnostically important forms of the parasite, including adults, infective larvae, and skin microfilariae. In addition, the method is capable of detecting O. volvulus infective larvae directly in extracts of blackfly vectors.  相似文献   

10.
A method for genotyping K-casein ( A, B, E ), β-casein ( A 1, A 2, A 3, A5, B ) and β-lactoglobulin ( A, B ) simultaneously by the use of allele discrimination by primer length combined with automated detection of fragments with a sequencing instrument is described. Seven different mutations within the milk protein genes were analysed in order to distinguish between the alleles examined. The samples were amplified in two separate multiplex polymerase chain reactions (PCRs), which were then pooled and separated according to size in a single lane on the gel. By using stringent PCR conditions, we have been able to achieve allele-specific amplifications and minimize amplification of mismatched primer for all seven mutations.  相似文献   

11.
Rhodococcus coprophilus, a natural inhabitant of herbivore faeces, has been suggested as a good indicator of animal (as opposed to human) faecal contamination of aquatic environments. However, conventional detection methods limit its use for this as they require up to 21 days to obtain a result. In this paper an optimised method for extracting R. coprophilus DNA from faecal samples is described. PCR and 5'-nuclease (TaqMan) PCR methods were developed to allow the detection and enumeration of R. coprophilus in faecal samples within 2-3 days. Both PCR methods targeted the 16S rRNA gene, producing an amplicon of 443 bp which was specific for R. coprophilus. Sixty cells were required to produce an amplification product by conventional PCR, while as little as one cell was required for the TaqMan PCR method. The latter approach gave a linear quantitative response over at least four log units with both bacterial cells and DNA. Successful amplification by PCR was achieved using DNA extracted from cow, sheep, horse and deer faeces but was negative for samples from humans, pig, possum, duck and rabbit. These PCR methods enhance the feasibility of using R. coprophilus to distinguish faecal pollution of farmed herbivores from human pollution.  相似文献   

12.
The polymerase chain reaction (PCR) is the most widely used technique for the study of DNA. Applications for PCR have been extended significantly by the development of "long" PCR, a technique that makes it possible to amplify DNA fragments up to 40 kb in length. This article describes two novel applications of the long PCR technique, one which simplifies restriction mapping and another which enhances amplification specificity and yield. The same primers used to perform the long PCR amplification can be used as probes to perform restriction mapping of the DNA fragment amplified. Restriction digestion performed prior to long PCR amplification can be used to selectively suppress the amplification of members of families of closely related DNA sequences, thereby making it possible to selectively amplify one of a group of highly homologous sequences. These two complimentary techniques, both involving use of the long PCR paired with restriction digestion, have potential application in any laboratory in which PCR is performed.  相似文献   

13.
A method which employs the polymerase chain reaction (PCR) to identify Escherichia coli strains containing the estA gene was developed. This gene codes for heat-stable enterotoxin type I. The use of an inosine-containing pair of amplification primers allowed the amplification of a specific 175-bp DNA fragment from several different estA alleles. The amplified fragments were identified and distinguished by allele-specific oligonucleotide hybridization and characterized by restriction endonuclease analysis. An extension of the classical two-primer PCR proved to be a very simple and rapid method to identify and characterize the estA alleles. Besides the inosine-containing pair of primers, which recognized all described alleles, additional oligonucleotides were used as primers. The sequence of each of these primers was allele specific, and each was amplification compatible with one of the inosine-containing primers. Thus, in one PCR the 175-bp fragment typical for all estA alleles and an allele-specific fragment of different size were produced. These fragments could be separated by agarose gel electrophoresis and were recognized by ethidium bromide staining. Twenty-seven E. coli strains were tested with this amplification system. The presence or lack of the genetic information for production of heat-stable enterotoxin type I was perfectly consistent with the ability of these strains to produce this enterotoxin, as determined by enzyme-linked immunosorbent assay.  相似文献   

14.
15.
We report two polymerase chain reaction (PCR)-based methods for distinguishing morphologically similar species based on amplification of a variable region of the 28S gene of ribosomal DNA. The four species we investigated are mosquitoes of the Anopheles minimus group: An. aconitus, An. varuna and An. minimus species A and C. The formally named species are vectors of human malaria parasites in south-east Asia but are difficult to distinguish with certainty on the basis of morphology. Allele-specific amplification was used to differentiate An. minimus A from An. minimus C. This technique has been widely used for the diagnosis of species. Single-strand conformation polymorphisms (SSCPs) were used to separate all four species. This technique, which has seldom been used for species identification, has many advantages: it does not require sequence information beyond that needed for amplification; it is ideally suited for the detection of heterozygotes; it utilizes more of the information in the PCR product than allele-specific amplification; it distinguishes all four species considered here and could easily be extended to other species; previously unknown intraspecific variation and additional species are likely to be detected. Thus, SSCPs provide valuable population genetic information which allele-specific amplification does not.  相似文献   

16.
This paper deals with the use of an electrochemical genosensor array for the rapid and simultaneous detection of different food-contaminating pathogenic bacteria. The method includes PCR amplification followed by analysis of the amplicons by hybridisation with toxin-specific oligonucleotide probes. A screen-printed array of four gold electrodes, modified using thiol-tethered oligonucleotide probes, was used. Unmodified PCR products were captured at the sensor interface via sandwich hybridisation with surface-tethered probes and biotinylated signaling probes. The resulting biotinylated hybrids were coupled with a streptavidin-alkaline phosphatase conjugate and then exposed to an alpha-naphthyl phosphate solution. Differential pulse voltammetry was finally used to detect the alpha-naphthol oxidation signal. Mixtures of DNA samples from different bacteria were detected at the nanomolar level without any cross-interference. The selectivity of the assay was also confirmed by the analysis of PCR products unrelated to the immobilised probes.  相似文献   

17.
This paper demonstrates how the polymerase chain reaction can be used to increase the sensitivity of detection of Leishmania parasites by DNA hybridization methods through the amplification of the minicircle target sequence. The oligonucleotide primers used are able to direct the amplification of all Leishmania strains tested. In addition, the PCR products from L. mexicana and L. braziliensis strains can be distinguished by hybridization with kDNA probes. The method is sensitive enough to detect the kDNA from a single organism and this sensitivity allows the use of nonradioactive hybridization methods. This method can be used to detect Leishmania from human biopsy material.  相似文献   

18.
Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2′-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.  相似文献   

19.
Isolated-probe PCR (IP-PCR) is a method that combines asymmetric PCR, unlabeled probes, and high-resolution DNA melting while maintaining a closed tube system. A double-stranded DNA (dsDNA) dye LCGreen I was used to detect the unlabeled probes. LCGreen I is also used to detect the 277-base pair PCR product peak as an internal amplification control. To accomplish this, IP-PCR separates the asymmetric PCR amplification step and the detection step of the unlabeled probes. This prevents the probes from interfering with the amplification of the DNA target. The samples are then melted using a high-resolution DNA melting instrument: the HR-1. The closed tube system virtually eliminates PCR product contamination or sample carryover The target apolipoprotein E (APOE) was chosen to test the IP-PCR technique. APOE contains two single nucleotide polymorphisms (SNPs) located 139 base pairs apart in a GC-rich region of the human genome. The results from this study show that the IP-PCR technique was able to determine the correct APOE genotype for each of the 101 samples. The IP-PCR technique should also be useful in detecting SNPs in other high-GC regions of the human genome.  相似文献   

20.
Detection of low-level DNA mutations can reveal recurrent, hotspot genetic changes of clinical relevance to cancer, prenatal diagnostics, organ transplantation or infectious diseases. However, the high excess of wild-type (WT) alleles, which are concurrently present, often hinders identification of salient genetic changes. Here, we introduce UV-mediated cross-linking minor allele enrichment (UVME), a novel approach that incorporates ultraviolet irradiation (∼365 nm UV) DNA cross-linking either before or during PCR amplification. Oligonucleotide probes matching the WT target sequence and incorporating a UV-sensitive 3-cyanovinylcarbazole nucleoside modification are employed for cross-linking WT DNA. Mismatches formed with mutated alleles reduce DNA binding and UV-mediated cross-linking and favor mutated DNA amplification. UV can be applied before PCR and/or at any stage during PCR to selectively block WT DNA amplification and enable identification of traces of mutated alleles. This enables a single-tube PCR reaction directly from genomic DNA combining optimal pre-amplification of mutated alleles, which then switches to UV-mediated mutation enrichment-based DNA target amplification. UVME cross-linking enables enrichment of mutated KRAS and p53 alleles, which can be screened directly via Sanger sequencing, high-resolution melting, TaqMan genotyping or digital PCR, resulting in the detection of mutation allelic frequencies of 0.001–0.1% depending on the endpoint detection method. UV-mediated mutation enrichment provides new potential for mutation enrichment in diverse clinical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号