首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma and several other malignancies. The lack of an efficient infection system has impeded the understanding of KSHV-related pathogenesis. A genetic approach was used to isolate infectious KSHV. Recombinant bacteria artificial chromosome (BAC) KSHV containing hygromycin resistance and green fluorescent protein (GFP) markers was generated by homologous recombination in KSHV-infected BCBL-1 cells. Recombinant KSHV genomes from cell clones that were resistant to hygromycin, expressed GFP, and produced infectious virions after induction with tetradecanoyl phorbol acetate (TPA) were rescued in Escherichia coli and reconstituted in 293 cells. Several 293 cell lines resulting from infection with recombinant virions induced from a full-length recombinant KSHV genome, named BAC36, were obtained. BAC36 virions established stable latent infection in 293 cells, harboring 1 to 2 copies of viral genome per cell and expressing viral latent proteins, with approximately 0.5% of cells undergoing spontaneous lytic replication, which is reminiscent of KSHV infection in Kaposi's sarcoma tumors. TPA treatment induced BAC36-infected 293 cell lines into productive lytic replication, expressing lytic proteins and producing virions that efficiently infected normal 293 cells with a approximately 50% primary infection rate. BAC36 virions were also infectious to HeLa and E6E7-immortalized human endothelial cells. Since BAC36 can be efficiently shuttled between bacteria and mammalian cells, it is useful for KSHV genetic analysis. The feasibility of the system was illustrated through the generation of a KSHV mutant with the vIRF gene deleted. This cellular model is useful for the investigation of KSHV infection and pathogenesis.  相似文献   

3.
Kaposi's sarcoma-associated herpesvirus (KSHV) is considered the etiologic agent of Kaposi's sarcoma and several lymphoproliferative disorders. Recently, the KSHV genome was cloned into a bacterial artificial chromosome and used to construct a recombinant KSHV carrying a deletion of the viral interferon regulatory factor gene (F. C. Zhou, Y. J. Zhang, J. H. Deng, X. P. Wang, H. Y. Pan, E. Hettler, and S. J. Gao, J. Virol. 76:6185-6196, 2002). The K8.1 glycoprotein is a structural component of the KSHV particle and is thought to facilitate virus entry by binding to heparan sulfate moieties on cell surfaces. To further address the role of K8.1 in virus infectivity, a K8.1-null recombinant virus (BAC36DeltaK8.1) was constructed by deletion of most of the K8.1 open reading frame and insertion of a kanamycin resistance gene cassette within the K8.1 gene. Southern blotting and diagnostic PCR confirmed the presence of the engineered K8.1 gene deletion. Transfection of the wild-type genome (BAC36) and mutant genome (BAC36DeltaK8.1) DNAs into 293 cells in the presence or absence of the complementing plasmid (pCDNAK8.1A), transiently expressing the K8.1A gene, produced infectious virions in the supernatants of transfected cells. These results demonstrated that the K8.1 glycoprotein is not required for KSHV entry into 293 cells.  相似文献   

4.
IRF-7 is the master regulator of type I interferon-dependent immune responses controlling both innate and adaptive immunity. Given the significance of IRF-7 in the induction of immune responses, many viruses have developed strategies to inhibit its activity to evade or antagonize host antiviral responses. We previously demonstrated that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu, F. X., King, S. M., Smith, E. J., Levy, D. E., and Yuan, Y. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5573-5578). In this report, we sought to reveal the mechanism underlying the ORF45-mediated inactivation of IRF-7. We found that ORF45 interacts with the inhibitory domain of IRF-7. The most striking feature in the IRF-7 inhibitory domain is two α-helices H3 and H4 that contain many hydrophobic residues and two β-sheets located between the helices that are also very hydrophobic. These hydrophobic subdomains mediate intramolecular interactions that keep the molecule in a closed (inactive) form. Mutagenesis studies confirm the contribution of the hydrophobic helices and sheets to the autoinhibition of IRF-7 in the absence of viral signal. The binding of ORF45 to the critical domain of IRF-7 leads to a hypothesis that ORF45 may maintain the IRF-7 molecule in the closed form and prevent it from being activated in response to viral infection.  相似文献   

5.
Zhu FX  Yuan Y 《Journal of virology》2003,77(7):4221-4230
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF45 is encoded by an immediate-early gene in the KSHV genome. This protein was recently shown to interact with interferon regulatory factor 7 and inhibit virus-mediated alpha/beta interferon induction (Zhu et al., Proc. Natl. Acad. Sci. USA 99:5573-5578, 2002). ORF45 was characterized as a phosphorylated protein, and it is localized in the cytoplasm of infected cells. In this report, we provide evidence that ORF45 is associated with KSHV virions. (i) ORF45 was detected in gradient-purified virions by Western blotting along with known structural proteins of KSHV including gB, K8.1, and major capsid protein. In contrast, ORF50/Rta, K8alpha, and ORF59/PF8 were not detected in the same virion preparation. (ii) ORF45 comigrates with KSHV virions in sucrose gradient ultracentrifugation. (iii) Virion-associated ORF45 was resistant to trypsin digestion but became sensitive after the virions were treated with detergent which destroys the viral envelope. (iv) ORF45 remained associated with tegument-nucleocapsid complex when virion-specific glycoproteins were removed after detergent treatment. (v) An ORF45 protein band was visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extensively purified KSHV virions and identified by mass spectrometry. (vi) By immunoelectron microscopy, virus-like structures were specifically stained by anti-ORF45 antibody. Based on the evidence, we conclude that ORF45 is associated with purified KSHV virions and appears to be a tegument protein. The presence of ORF45 in KSHV virions raised the possibility that this protein may be delivered to host cells at the start of infection and therefore have the opportunity to act at the very early stage of the infection, suggesting an important role of ORF45 in KSHV primary infection.  相似文献   

6.
7.
8.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of two B cell lymphoproliferative diseases, namely primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). KSHV infection of B cell lymphoma in vitro has been a long-standing battle in advancing human KSHV biology. In this study, a modified form of KSHV BAC36 named BAC36A significantly increased the fidelity of gene-targeted site-directed mutagenesis in the KSHV genome. This modification eliminates tedious screening steps required to obtain mutant clones when a KSHV BAC36 reverse genetic system is used. Coculturing B-cell lymphoma BJAB cells with KSHV BAC36A stably transfected 293T cells enabled us to infect BJAB cells with a KSHV virion derived from the KSHV BAC36A. The coculture system produced substantial amounts of KSHV infection to BJAB, meaning that KSHV virions were released from 293T cells and then infected neighboring BJAB cells. Owing to our success with the KSHV BAC36A and coculture system, we propose a new genetic system for the study of KSHV gene expression and regulation in B-cell lymphoma.  相似文献   

9.
Gao SJ  Deng JH  Zhou FC 《Journal of virology》2003,77(18):9738-9749
Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to the development of Kaposi's sarcoma (KS), a vascular spindle cell tumor primarily consisting of proliferating endothelial cells. Although KSHV has been shown to infect primary human endothelial cells and convert them into spindle shapes, KSHV infection is largely latent, and efforts to establish a highly efficient and sustainable infection system have been unsuccessful. A recombinant KSHV, BAC36, that has high primary-infection efficiency in 293 cells has been obtained (F. C. Zhou, Y. J. Zhang, J. H. Deng, X. P. Wang, H. Y. Pan, E. Hettler, and S. J. Gao, J. Virol. 76:6185-6196, 2002). BAC36 contains a green fluorescent protein cassette which can be used to conveniently monitor viral infection. Here, we describe the establishment of a KSHV lytic-replication-permissive infection cell model using BAC36 virions to infect primary human umbilical vein endothelial cell (HUVEC) cultures. BAC36 infection of HUVEC cultures has as high as 90% primary-infection efficiency and consists of two phases: a permissive phase, in which the cultures undergo active viral lytic replication, producing a large number of virions and concomitantly resulting in large-scale cell death, and a latent phase, in which the surviving cells from the permissive phase switch into latent infection, with a small number of cells undergoing spontaneous viral lytic replication, and proliferate into bundles of spindle cells with KS slit-like spaces. An assay for determining the KSHV titer in a virus preparation has also been developed. The cell model should be useful for examining KSHV infection and replication, as well as for understanding the development of KS.  相似文献   

10.
Open reading frame (ORF) 45 is an outer tegument protein of Kaposi’s sarcoma-associated herpesvirus (KSHV). Genetic analysis of an ORF45-null mutant revealed that ORF45 plays a key role in the events leading to the release of KSHV particles. ORF45 associates with lipid rafts (LRs), which is responsible for the colocalization of viral particles with the trans-Golgi network and facilitates their release. In this study, we identified a host protein, RAB11 family interacting protein 5 (RAB11FIP5), that interacts with ORF45 in vitro and in vivo. RAB11FIP5 encodes a RAB11 effector protein that regulates endosomal trafficking. Overexpression of RAB11FIP5 in KSHV-infected cells decreased the expression level of ORF45 and inhibited the release of KSHV particles, as reflected by the significant reduction in the number of extracellular virions. In contrast, silencing endogenous RAB11FIP5 increased ORF45 expression and promoted the release of KSHV particles. We further showed that RAB11FIP5 mediates lysosomal degradation of ORF45, which impairs its ability to target LRs in the Golgi apparatus and inhibits ORF45-mediated colocalization of viral particles with the trans-Golgi network. Collectively, our results suggest that RAB11FIP5 enhances lysosome-dependent degradation of ORF45, which inhibits the release of KSHV particles, and have potential implications for virology and antiviral design.  相似文献   

11.
Open reading frame 45 (ORF45) of Kaposi''s sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.Kaposi''s sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus and the causative agent of several human cancers, including Kaposi''s sarcoma (KS), primary effusion lymphoma, and multicentric Castleman''s disease (3, 6). Like all herpesviruses, KSHV has two alternative life cycles, a latent and a lytic cycle. During latency, only a few viral genes are expressed, and no progeny viruses are produced. Under appropriate conditions, latent viral genomes are activated, initiate lytic replication, and express a full panel of viral genes, in a process that leads to viral assembly, release of progeny virus particles, and de novo infection of naïve cells (3, 6). KSHV establishes latent infection in the majority of infected cells in cases of KS, primary effusion lymphoma, and multicentric Castleman''s disease, but lytic replications occur in a small fraction. The recurrent and periodic lytic cycles of KSHV are believed to play critical roles in viral pathogenesis (6, 7).Open reading frame 45 (ORF45) is a KSHV-encoded gene product that plays a critical role in the viral lytic cycle. It is an immediate-early protein and is also present in viral particles as tegument protein (26, 27, 30). Disruption of ORF45 has no significant effect on overall viral lytic gene expression or DNA replication in BAC36-reconstituted 293T cells induced with both tetradecanoyl phorbol acetate (TPA) and sodium butyrate together, but the ORF45-null mutant produces 5- to 10-fold fewer progeny viruses than the wild type and the mutant virus has dramatically reduced infectivity, suggesting that ORF45 plays important roles at both early and late stages of viral infection (29). In addition to its roles as a tegument component, which are possibly involved in viral ingress and egress processes, KSHV ORF45 interacts with cellular proteins and modulates the cellular environment. At least two such functions have been described. First, KSHV ORF45 inhibits activation of interferon regulatory factor 7 (IRF-7) and therefore antagonizes the host innate antiviral response (28). Second, KSHV ORF45 interacts with p90 ribosomal kinase 1 and 2 (RSK1/RSK2) and modulates the extracellular signal-regulated kinase/RSK signaling pathway, which is known to play essential roles in KSHV reactivation and lytic replication (12). All of these data suggest that KSHV ORF45 is a multifunctional protein.ORF45 is unique to the gammaherpesviruses; it has no homologue in the alpha- or betaherpesviruses. ORF45 homologues have been identified as virion protein components in other gammaherpesviruses, such as Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), and murine herpesvirus 68 (MHV-68), suggesting that certain tegument functions of ORF45 are conserved (2, 11, 18). ORF45 homologues differ in protein length. KSHV ORF45 is the longest, at 407 amino acids (aa); RRV, EBV, MHV-68, and herpesvirus saimiri (HVS) have proteins of 353, 217, 206, and 257 aa, respectively. The limited homologies lie mostly at the amino- and carboxyl-terminal ends. The middle portion of KSHV ORF45 diverges from those of its homologues. The homologues differ in subcellular localization. We and others have reported previously that KSHV ORF45 is found predominantly in the cytoplasm (1, 21, 28, 30), whereas ORF45 of MHV-68 is found exclusively in the nucleus (9). Recently, we found KSHV ORF45 also present in the nuclei of BCBL-1 cells in what resembled viral replication compartments, suggesting that ORF45 could shuttle into the nucleus (12).Nucleocytoplasmic trafficking of proteins across the nuclear membrane occurs through nuclear pore complexes. Small molecules of up to approximately 9 nm in diameter, corresponding to a globular protein of approximately 40 to 60 kDa, can in principle enter or leave the nucleus by diffusion through nuclear pores (15, 17, 24). Large molecules are transported with the aid of a related family of transport factors, importins and exportins, which recognize nuclear localization sequence (NLS)-containing or nuclear export sequence (NES)-containing proteins (15, 17, 23). CRM1 (exportin 1) has been identified as a common export receptor that recognizes human immunodeficiency virus Rev-like leucine-rich NES sequences and is responsible for the export of such NES-containing proteins (4, 5, 19, 22). CRM1-dependent nuclear export is specifically inhibited by a pharmacological compound, leptomycin B (LMB), that interacts with CRM1 and thus blocks such NES-mediated protein export (4).To understand the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we attempted to locate the signals that control its subcellular localization. In the research reported here, we identified a leucine-rich NES and an adjacent basic NLS in KSHV ORF45. We demonstrated that the regulated intracellular trafficking of ORF45, especially its translocation into the nucleus, is important for KSHV lytic replication.  相似文献   

12.
Murine gammaherpesvirus 68 (MHV-68) has been developed as a model for the human gammaherpesviruses Epstein-Barr virus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV), which are associated with several types of human diseases. Open reading frame 45 (ORF45) is conserved among the members of the Gammaherpesvirinae subfamily and has been suggested to be a virion tegument protein. The repression of ORF45 expression by small interfering RNAs inhibits MHV-68 viral replication. However, the gene product of MHV-68 ORF45 and its function have not yet been well characterized. In this report, we show that MHV-68 ORF45 is a phosphorylated nuclear protein. We constructed an ORF45-null MHV-68 mutant virus (45STOP) by the insertion of translation termination codons into the portion of the gene encoding the N terminus of ORF45. We demonstrated that the ORF45 protein is essential for viral gene expression immediately after the viral genome enters the nucleus. These defects in viral replication were rescued by providing ORF45 in trans or in an ORF45-null revertant (45STOP.R) virus. Using a transcomplementation assay, we showed that the function of ORF45 in viral replication is conserved with that of its KSHV homologue. Finally, we found that the C-terminal 23 amino acids that are highly conserved among the Gammaherpesvirinae subfamily are critical for the function of ORF45 in viral replication.  相似文献   

13.
Open reading frame (ORF) 45 of Kaposi''s sarcoma-associated herpesvirus (KSHV) is a tegument protein. A genetic analysis with a null mutant suggested a possible role for this protein in the events leading to viral egress. In this study, ORF45 was found to interact with KIF3A, a kinesin-2 motor protein that transports cargoes along microtubules to cell periphery in a yeast two-hybrid screen. The association was confirmed by both co-immunoprecipitation and immunoflorescence approaches in primary effusion lymphoma cells following virus reactivation. ORF45 principally mediated the docking of entire viral capsid-tegument complexes onto the cargo-binding domain of KIF3A. Microtubules served as the major highways for transportation of these complexes as evidenced by drastically reduced viral titers upon treatment of cells with a microtubule depolymerizer, nocodazole. Confocal microscopic images further revealed close association of viral particles with microtubules. Inhibition of KIF3A–ORF45 interaction either by the use of a headless dominant negative (DN) mutant of KIF3A or through shRNA-mediated silencing of endogenous KIF3A expression noticeably decreased KSHV egress reflecting as appreciable reductions in the release of extracellular virions. Both these approaches, however, failed to impact HSV-1 egress, demonstrating the specificity of KIF3A in KSHV transportation. This study thus reports on transportation of KSHV viral complexes on microtubules by KIF3A, a kinesin motor thus far not implicated in virus transportation. All these findings shed light on the understudied but significant events in the KSHV life cycle, delineating a crucial role of a KSHV tegument protein in cellular transport of viral particles.  相似文献   

14.
15.
16.
The Kaposi sarcoma-associated herpesvirus (KSHV; or human herpesvirus-8)-encoded protein called K-bZIP (also named K8) was found to be multifunctional. In this study, we discovered that K-bZIP interacts with histone deacetylase (HDAC) 1/2 in 12-O-tetradecanoylphorbol-13-acetate-stimulated BCBL-1 lymphocyte cells. K-bZIP appears to repress HDAC activity through this interaction, which we determined to be independent of K-bZIP SUMOylation. We dissected the domains of K-bZIP and found that the leucine zipper (LZ) domain is essential for the interaction of K-bZIP and HDAC. In addition, we constructed a KSHV bacterial artificial chromosome (BAC) with LZ domain-deleted K-bZIP (KSHVdLZ) and transfected this mutated KSHV BAC DNA into HEK 293T cells. As a result, it was consistently found that K-bZIP without its LZ domain failed to interact with HDAC2. We also showed that the interaction between K-bZIP and HDAC is necessary for the inhibition of the lytic gene promoters (ORF50 and OriLyt) of KSHV by K-bZIP. Furthermore, we found that the LZ domain is also important for the interaction of K-bZIP with the promoters of ORF50 and OriLyt. Most interestingly, although it was found to have suppressive effects on the promoters of ORF50 and OriLyt, KSHVdLZ replicates at a significantly lower level than its BAC-derived revertant (KSHVdLZRev) or KSHVWT (BAC36) in HEK 293T cells. The defectiveness of KSHVdLZ replication can be partially rescued by siRNA against HDAC2. Our results suggest that the function of K-bZIP interaction with HDAC is two-layered. 1) K-bZIP inhibits HDAC activity generally so that KSHVdLZ replicates at a lower level than does KSHVWT. 2) K-bZIP can recruit HDAC to the promoters of OriLyt and ORF50 through interaction with HDAC for K-bZIP to have a temporary repressive effect on the two promoters.  相似文献   

17.
Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus type 8 [HHV8]) latently infects a number of cell types. Reactivation of latent virus can occur by treatment with the phorbol ester tetradecanoyl phorbol acetate (TPA) or with the transfection of plasmids expressing the lytic switch activator protein K-Rta, the gene product of ORF50. K-Rta expression is sufficient for the activation of the entire lytic cycle and the transactivation of viral genes necessary for DNA replication. In addition, recent evidence has suggested that K-Rta may participate directly in the initiation of lytic DNA synthesis. We have now generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a large deletion within the ORF50 locus. This BAC, BAC36Delta50, failed to produce infectious virus upon treatment with TPA and was defective for DNA synthesis. Expression of K-Rta in trans in BAC36Delta50-containing cells was able to abolish both defects. Real-time PCR revealed that K-bZIP, ORF40/41, and K8.1 were not expressed when BAC36Delta50-containing cells were induced with TPA. However, the mRNA levels of ORF57 were over fivefold higher in TPA-treated BAC36Delta50-containing cells than those observed in similarly treated wild-type BAC-containing cells. In addition, immunohistochemical analysis showed that while the latency-associated nuclear antigen (LANA) was expressed in the mutant BAC-containing cells, ORF59 and K8.1 expression was not detected in TPA-induced BAC36Delta50-containing cells. These results showed that K-Rta is essential for lytic viral reactivation and transactivation of viral genes contributing to DNA replication.  相似文献   

18.
During the outbreak of SARS in 2002/3, a prototype virus was isolated from a patient in Frankfurt/Germany (strain Frankfurt-1). As opposed to all other SARS-Coronavirus strains, Frankfurt-1 has a 45-nucleotide deletion in the transmembrane domain of its ORF 7b protein. When over-expressed in HEK 293 cells, the full-length protein but not the variant with the deletion caused interferon beta induction and cleavage of procaspase 3. To study the role of ORF 7b in the context of virus replication, we cloned a full genome cDNA copy of Frankfurt-1 in a bacterial artificial chromosome downstream of a T7 RNA polymerase promoter. Transfection of capped RNA transcribed from this construct yielded infectious virus that was indistinguishable from the original virus isolate. The presumed Frankfurt-1 ancestor with an intact ORF 7b was reconstructed. In CaCo-2 and HUH7 cells, but not in Vero cells, the variant carrying the ORF 7b deletion had a replicative advantage against the parental virus (4- and 6-fold increase of virus RNA in supernatant, respectively). This effect was neither associated with changes in the induction or secretion of type I interferon, nor with altered induction of apoptosis in cell culture. However, pretreatment of cells with interferon beta caused the deleted virus to replicate to higher titers than the parental strain (3.4-fold in Vero cells, 7.9-fold in CaCo-2 cells). In Syrian Golden Hamsters inoculated intranasally with 10e4 plaque forming units of either virus, mean titers of infectious virus and viral RNA in the lungs after 24 h were increased 23- and 94.8-fold, respectively, with the deleted virus. This difference could explain earlier observations of enhanced virulence of Frankfurt-1 in Hamsters as compared to other SARS-Coronavirus reference strains and identifies the SARS-CoV 7b protein as an attenuating factor with the SARS-Coronavirus genome. Because attenuation was focused on the early phase of infectionin-vivo, ORF 7b might have contributed to the delayed accumulation of virus in patients that was suggested to have limited the spread of the SARS epidemic.  相似文献   

19.
Zhu FX  Chong JM  Wu L  Yuan Y 《Journal of virology》2005,79(2):800-811
The proteins that compose a herpesvirus virion are thought to contain the functional information required for de novo infection, as well as virion assembly and egress. To investigate functional roles of Kaposi's sarcoma-associated herpesvirus (KSHV) virion proteins in viral productive replication and de novo infection, we attempted to identify virion proteins from purified KSHV by a proteomic approach. Extracellular KSHV virions were purified from phorbol-12-tetradecanoate-13-acetate-induced BCBL-1 cells through double-gradient ultracentrifugation, and their component proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Thirty prominent protein bands were excised and subjected to high-performance liquid chromatography ion trap mass spectrometric analysis. This study led to the identification of 24 virion-associated proteins. These include five capsid proteins, eight envelope glycoproteins, six tegument proteins, and five proteins whose locations in the virions have not yet been defined. Putative tegument proteins encoded by open reading frame 21 (ORF21), ORF33, and ORF45 were characterized and found to be resistant to protease digestion when purified virions were treated with trypsin, confirming that they are located within the virion particles. The ORF64-encoded large tegument protein was found to be associated with capsid but sensitive to protease treatment, suggesting its unique structure and array in KSHV virions. In addition, cellular beta-actin and class II myosin heavy chain type A were found inside KSHV virions and associated with tegument-capsid structure. Identification of KSHV virion proteins makes it possible to study the functional roles of these virion proteins in KSHV replication and pathogenicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号