首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cell lines of four mammalian species were each examined for the number of Moloney murine sarcoma virus (M-MSV) DNA copies in total cellular DNA after M-MSV transformation. Sarcoma-positive, leukemia-negative (S+L-) M-MSV-transformed cells were compared to M-MSV-transformed cells infected with a replicating leukemia virus. Both unfractionated M-MSV complementary DNA and complementary DNA representing the MSV-specific and the MSV-murine leukemia virus-common regions of the M-MSV genome were hybridized to total cellular DNA of various species. DNAs of mouse, cat, dog, and human S+L-cells contained from less than one to a few proviral M-MSV DNA copies per haploid genome. In contrast, helper virus-coinfected, M-MSV-producing cells of each species showed a 3- to 10-fold increase in M-MSV proviral DNA over that found in corresponding S+L- cells. MSV-specific and MSV-murine leukemia virus-common nucleotide sequences were each increased to a similar degree. A corresponding examination of cellular DNA of leukemia virus-infected normal or S+L- mammalian cells was performed to establish the resulting number of leukemia proviral DNA copies. The infection of normal or S+L- mammalian cells with several leukemia-type viruses that did not have nucleotide sequences closely related to the cell before infection resulted in the appearance of one to three corresponding leukemia proviral DNA copies.  相似文献   

4.
5.
Reticuloendotheliosis virus is an avian type C retrovirus that is capable of transforming fibroblasts and hematopoietic cells both in vivo and in vitro. This virus is highly related to the three other members of the reticuloendotheliosis virus group, including spleen necrosis virus, but it is apparently unrelated to the avian leukosis-sarcoma virus family. Previous studies have shown that it consists of a replication-competent helper virus (designated REV-A) and a defective component (designated REV) that is responsible for transformation. In this study we used restriction endonuclease mapping and heteroduplex analysis to characterize the proviral DNAs of REV-A and REV. Both producer and nonproducer transformed chicken spleen cells were used as sources of REV proviral DNA; this genome was mapped in detail, and fragments of it were cloned in lambdagtWES.lambdaB. The infected canine thymus line Cf2Th(REV-A) was used as a source of REV-A proviral DNA. The restriction maps and heteroduplexes of the REV and REV-A genomes showed that (proceeding from 5' to 3') (i) REV contains a large fraction of the REV-A gag gene (assuming a gene order of gag-pol-env and gene sizes similar to those of other type C viruses), for the two genomes are very similar over a distance of 2.1 kilobases beginning at their 5' termini; (ii) most or all of REV-A pol is deleted in REV; (iii) REV contains a 1.1 kilobase segment derived from the 3' end of REV-A pol or the 5' end of env or both; (iv) this env region in REV is followed by a 1.9-kilobase segment which is unrelated to REV-A; and (v) the helper-unrelated segment of REV extends essentially all of the way to the beginning of the 3' long terminal repeat. Therefore, like avian myeloblastosis virus but unlike the other avian acute leukemia viruses and most mammalian and avian sarcoma viruses, REV appears to be an env gene recombinant. We also found that the REV-specific segment is derived from avian DNA, for a cloned REV fragment was able to hybridize with the DNA from an uninfected chicken. Therefore, like the other acute transforming viruses, REV appears to be the product of recombination between a replication-competent virus and host DNA. Two other defective genomes in virus-producing chicken cells were also cloned and characterized. One was very similar to REV in its presumptive gag and env segments, but instead of a host-derived insertion it contained additional env sequences. The second was similar (but not identical) to the first in its gag and env regions and appeared to contain an additional 1-kilobase inversion of REV-A sequences.  相似文献   

6.
Structure of the Abelson murine leukemia virus genome.   总被引:31,自引:0,他引:31  
A Shields  S Goff  M Paskind  G Otto  D Baltimore 《Cell》1979,18(4):955-962
Virions produced from cells transformed by A-MuLV contain a 30S, 5.6 kb RNA that can be translated in a cell-free system to form the characteristic A-MuLV protein. This RNA was mapped by heteroduplex methods using DNA probes from M-MuLV, the presumed parent of A-MuLV. The overall organization of the RNA was determined by using full-length M-MuLV reverse transcribed DNA and visualizing the heteroduplexes in the electron microscope. This showed that A-MuLV and M-MuLV have homologous sequences at both ends of their RNAs but that the central portion of the A-MuLV genome is not homologous to sequences in M-MuLV RNA. A precise measure of the lengths of the shared regions was obtained by using S1 nuclease to digest hybrids between 32P-labeled M-MuLV DNA and A-MuLV RNA; the resulting fragments were analyzed for their length by electrophoresis. The regions of homology were shown to be 1320 nucleotides long at the 5' end and 730 nucleotides long at the 3' end. Thus approximately 6200 nucleotides of the approximately 8300 in M-MuLV RNA were deleted when the A-MuLV genome was formed, but an insert of 3600 nucleotides, presumably derived from the normal murine genome, was inserted in place of the deleted region.  相似文献   

7.
BALB/c mouse sarcoma virus (BALB-MSV) is a spontaneously occurring transforming retrovirus of mouse origin. The integrated form of the viral genome was cloned from the DNA of a BALB-MSV-transformed nonproducer NRK cell line in the Charon 9 strain of bacteriophage lambda. In transfection assays, the 19-kilobase-pair (kbp) recombinant DNA clone transformed NIH/3T3 mouse cells with an efficiency of 3 X 10(4) focus-forming units per pmol. Such transformants possessed typical BALB-MSV morphology and released BALB-MSV after helper virus superinfection. A 6.8-kbp DNA segment within the 19-kbp DNA possessed restriction enzyme sites identical to those of the linear BALB-MSV genome. Long terminal repeats of approximately 0.6 kbp were localized at either end of the viral genome by the presence of a repeated constellation of restriction sites and by hybridization of segments containing these sites with nick-translated Moloney murine leukemia virus long terminal repeat DNA. A continuous segment of at least 0.6 and no more than 0.9 kbp of helper virus-unrelated sequences was localized toward the 3' end of the viral genome in relation to viral RNA. A probe composed of these sequences detected six EcoRI-generated DNA bands in normal mouse cell DNA as well as a smaller number of bands in rat and human DNAs. These studies demonstrate that BALB-MSV, like previously characterized avian and mammalian transforming retroviruses, arose by recombination of a type C helper virus with a well-conserved cellular gene.  相似文献   

8.
9.
Abelson murine leukemia virus (A-MuLV) can induce pre-B- or T-cell lymphomas (thymomas) in mice depending on the route and time of injection. Previous studies have shown that the choice of the helper virus used to rescue A-MuLV greatly influences its ability to induce pre-B-cell lymphomas. In this study, we investigated the role of the helper virus in A-MuLV-induced thymomas. A-MuLV rescued with the helper Moloney MuLV, BALB/c endogenous N-tropic MuLV, and two chimeric MuLVs derived from these two parents were injected intrathymically in young adult NIH Swiss mice. All four A-MuLV pseudotypes were found to be equally efficient in the induction of thymomas, whereas drastic differences were observed in their pre-B-cell lymphomagenic potential. Thymoma induction by A-MuLV was independent of the replication potential of the helper virus in the thymus, and no helper proviral sequences could be detected in the majority of thymomas induced by A-MuLV rescued with parental BALB/c endogenous or chimeric MuLVs. In the thymomas in which helper proviruses were present, none of them were found integrated in the Ahi-1 region, a common proviral integration site found in A-MuLV-induced pre-B-cell lymphomas (Y. Poirer, C. Kozak, and P. Jolicoeur, J. Virol. 62:3985-3992, 1988). In addition, helper-free stocks of A-MuLV were found to be as lymphomagneic as other pseudotypes in inducing thymomas after intrathymic inoculation, in contrast to their inability to induce pre-B-cell lymphomas when injected intraperitoneally in newborn mice. Restriction enzyme analysis revealed one to three A-MuLV proviruses in each thymoma, indicating the oligoclonality of these tumors. Analysis of the immunoglobulin and T-cell receptor loci confirmed that the major population of cells of these primary thymomas belongs to the T-cell lineage. Together, these results indicate that the helper virus has no effect in the induction of A-MuLV-induced T-cell lymphomas, in contrast to its important role in the induction of A-MuLV-induced pre-B-cell lymphomas. Our data also revealed distinct biological requirements for transformation of these two target cells by v-abl.  相似文献   

10.
The unintegrated closed circular form of viral DNA prepared from NIH3T3 cells infected with Kirsten murine sarcoma virus was cloned into bacterial plasmid pBR322. The closed circular DNA, which consisted of two different-sized populations, was enriched from the virus-infected cells, linearized with BamHI, and inserted into pBR322 DNA. Four different recombinant DNAs (clones 2, 4, 6, and 7) were obtained, and a physical map of each was constructed by using various restriction enzymes. Clone 4 DNA had the largest insertion, corresponding to a complete copy of the linear DNA. This suggested that this insertion contained two copies of the 0.55-kilobase pair long terminal redundant sequence. Clone 2 and clone 6 insertion DNAs had deletions of 0.2 and 0.5 kilobase pair, respectively, which mapped near the right end (3' side of viral RNA) of the linear DNA. Clone 7 DNA appeared to have a deletion of a single copy of the large terminal redundant sequence. Transfection of BALB3T3 cells with the clone 4 DNA insertion showed that this DNA had transforming activity. The efficiency of transfection with clone 4 Kirsten murine sarcoma virus DNA was enhanced eightfold by inserting EcoRI-cleaved viral DNA into the EcoRI site of pBR322. The EcoRI-inserted DNA produced foci with single-hit kinetics, suggesting that a single molecule of Kirsten murine sarcoma virus DNA can induce transformation. Results of transfections with EcoRI-inserted Kirsten murine sarcoma virus DNA cleaved with various restriction enzymes suggested that the first 3.3-kilobase pair region at the left end of the linear DNA is important for the initiation of transformation or maintenance of transformation or both.  相似文献   

11.
The Mov-2 and Mov-10 substrains of mice, each carrying Moloney leukemia virus (= M-MuLV) in their germ line at the Mov-2 and Mov-10 locus, respectively, do occasionally at a later age (Mov-2) or not at all (Mov-10) activate infectious virus. The M-MuLV proviruses with flanking mouse sequences corresponding to the Mov-2 and Mov-10 locus, respectively, were molecularly cloned. Restriction enzyme analysis revealed no major deletions or insertions in the proviral genomes of the Mov-2 and Mov-10 locus. Both cloned DNAs induced XC plaques in a transfection assay. The specific infectivity, however, was very low and 3T3 cells transfected with the Mov-2 or Mov-10 clone did not produce infectious virus. Removing part of the 5' cellular sequences from the Mov-10 clone did not increase the infectivity. The results suggest that the M-MuLV integrated at the Mov-2 and Mov-10 locus carry a mutation which prevents synthesis of infectious virus but permits XC plaque induction by partial genome expression or synthesis of non-infectious particles.  相似文献   

12.
The sequence complexity of the 60-70S RNA complex from Moloney murine leukemia virus (M-MuLV) was determined by measuring the annealing rate of radioactively labeled virus-specific DNA with M-MuLV 60-70S RNA in conditions of vast RNA excess. The M-MuLV RNA annealing rate, characterized by the quantity C(r)t((1/2)), was compared with the C(r)t((1/2)) values for annealing of poliovirus 35S RNA (2.6 x 10(6) molecular weight) with poliovirus-specific DNA and Sindbis virus 42S RNA (4.3 x 10(6) molecular weight) with Sindbis-specific DNA. M-MuLV-specific DNA was prepared in vitro by the endogenous DNA polymerase reaction of M-MuLV virions, and poliovirus and Sindbis virus DNAs were prepared by incubation of viral RNA and DNA polymerase purified from avian myeloblastosis virus and an oligo deoxynucleotide primer. The poliovirus and Sindbis virus DNAs were sedimented through alkaline sucrose gradients, and those portions of the DNA with sizes similar to the M-MuLV DNA were selected out for the annealing measurements. M-MuLV was cloned on NIH-3T3 cells because it appeared possible that the standard source of M-MuLV for these experiments was a mixture of viruses. The annealing measurements indicated a sequence complexity of approximately 9 x 10(6) daltons for the cloned M-MuLV 60-70S RNA when standardized to poliovirus and Sindbis virus RNAs. This value supports the hypothesis that each of the 35S RNA subunits of M-MuLV 60-70S RNA has a different base sequence.  相似文献   

13.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

14.
Five different types of protein kinase activities have been evaluated in cell lines from murine lymphomas induced by Abelson leukemia virus (A-MuLV), whose oncogene codes for a tyrosine protein kinase. Such activities were compared with those of normal cells and of cells transformed by Moloney leukemia virus (M-MuLV), lacking oncogene sequences in its genome. While cAMP-dependent protein kinase and casein kinase-1 do not undergo significant changes, casein kinase-2 rises in both A-MuLV and M-MuLV infected lymphocytes, becoming largely associated with the particulate fraction of transformed cells. Protein kinase-C on the other hand is unchanged in M-MuLV transformed cells but it undergoes a 2-3-fold increment in both soluble and particulate fractions of A-MuLV transformed lymphocytes, which also display high tyrosine protein kinase activity.  相似文献   

15.
16.
Several DNAs representing the genome of the avian acute leukemia virus OK 10 were isolated by molecular cloning from a transformed quail cell line, 9C, which contained at least six OK 10 proviruses. Recombinant lambda phages harboring the OK 10 genome and additional flanking cellular DNA sequences were studied by restriction endonuclease mapping and hybridization to viral cDNA probes. Six of the clones represented complete proviruses with similar, if not identical, viral sequences integrated at different positions in the host DNA. The organization of the OK 10 genome was determined by electron-microscopic analysis of heteroduplexes formed between the cloned OK 10 DNA and DNAs representing the c-myc gene and the genomes of two other avian retroviruses, Rous-associated virus-1 and MC29. The results indicated that the OK 10 proviral DNA is about 7.5 kilobases in size with the following structure: 5'-LTR-gag-delta polmyc-delta env-LTR-3', where LTR indicates a long terminal repeat. The oncogene of OK 10, v-mycOK 10, forms a continuous DNA segment of around 1.7 kilobases between pol and env. It is similar in structure and length to the v-myc gene of MC29, as demonstrated by restriction endonuclease and heteroduplex analyses. Two of the OK 10 proviruses were tested in transfection experiments: both DNAs gave rise to virus with the transforming capacities of OK 10 when Rous-associated virus-1 was used to provide helper virus functions.  相似文献   

17.
The Mov-7 and Mov-9 substrains of mice, carrying Moloney murine leukemia virus (M-MuLV) in their germ line at the Mov-7 locus and Mov-9 locus, respectively, are different with respect to virus activation. Infectious virus appears in all mice carrying the Mov-9 locus but is not activated in animals carrying the Mov-7 locus. Consequently, only Mov-9 mice develop viremia and subsequent leukemia. The endogenous M-MuLV provirus with flanking mouse sequences corresponding to the Mov-7 and Mov-9 loci was molecularly cloned. Detailed restriction maps obtained from the cloned DNAs revealed no detectable differences in the proviral genomes. The flanking mouse sequences, however, were different, confirming that the Mov-7 and Mov-9 loci represent different integration sites of M-MuLV. Both clones induced XC plaques in a transfection assay. The specific infectivity of the clones, however, was different. A total of 10−5 XC plaques per genome equivalent were induced by the Mov-9 clone, whereas only 10−9 XC plaques per genome equivalent were induced by the Mov-7 clone. Moreover, NIH 3T3 cells transfected with the Mov-9 clone produced NB-tropic M-MuLV, whereas cells transfected with the Mov-7 clone did not produce infectious virus. The results suggest that M-MuLV integrated at the Mov-7 locus carries a mutation which prevents synthesis of infectious virus but permits XC plaque induction by partial genome expression or synthesis of noninfectious particles. Thus, the pattern of virus expression in Mov-7 and Mov-9 mice correlates with the biological properties of the respective clones. Genomic DNA from Mov-9 mice was not infectious in the transfection assay (specific infectivity < 10−7 PFU per genome equivalent). As the only difference between the genomic and the cloned Mov-9 DNA appears to be the presence of 5-methylcytosine in CpG sequences, our results suggest that removal of methyl groups by molecular cloning in procaryotes permits genome expression in transfected eucaryotic cells. Our results support the hypothesis that DNA methylation is relevant not only in genome expression in the animal but also in expression of genes transfected into eucaryotic cells.  相似文献   

18.
Two lambda proviral DNA recombinants were characterized with a number of restriction endonucleases. One recombinant contained a complete presumptive avian myeloblastosis virus (AMV) provirus flanked by cellular sequences on either side, and the second recombinant contained 85% of a myeloblastosis-associated virus type 1 (MAV-1)-like provirus with cellular sequences adjacent to the 5' end of the provirus. Comparing the restriction maps for the proviral DNAs contained in each lambda hybrid showed that the putative AMV and MAV-1-like genomes shared identical enzyme sites for 3.6 megadaltons beginning at the 5' termini of the proviruses with respect to viral RNA. Two enzyme sites near the 3'-end of the MAV-1-like provirus were not present in the putative AMV genome. We also examined a number of leukemic myeloblast clones for proviral content and cell-provirus integration sites. The presumptive AMV provirus was present in all the leukemic myeloblast clones regardless of the endogenous proviral content of the target cells or the AMV pseudotype used for conversion. Multiple cellular sites were suitable for integration of the putative AMV genome and the helper genomes. The proviral genomes were all integrated colinearly with respect to linear viral DNA.  相似文献   

19.
The myeloproliferative sarcoma virus (MPSV) induces extensive hematopoietic changes, including spleen foci in adult mice, and transforms fibroblasts in vitro. NRK nonproducer cell lines of MPSV and ts temperature-sensitive mutants were analyzed by restriction enzyme digestion and Southern blotting. EcoRI fragments containing the proviral DNAs of MPSV and two temperature-sensitive mutants and rat cellular sequences homologous to c-mos were molecularly cloned. By comparing restriction enzyme cleavage sites, it was shown that the MPSV genome consists only of sequences related either to Moloney murine leukemia virus or to the c-mos mouse oncogenic sequences. Two regions of fragment heterogeneity were observed: (i) in the defective pol gene, where MPSV and the two cloned temperature-sensitive mutants were different from Moloney murine sarcoma virus and from each other, although MPSV wild-type retained more of the pol gene than any of the Moloney murine sarcoma virus isolates; (ii) in the area 3' to the mos gene, which was identical in MPSV and its temperature-sensitive mutants but different from other Moloney murine sarcoma virus variants. Transfection of cloned MPSV DNA in RAT4 cells and virus rescue on infection with Friend murine leukemia virus yielded MPSV which transformed fibroblasts in vitro and also induced spleen foci in adult mice, thus proving that both properties are coded by the same viral genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号