首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细根对植物功能的发挥和土壤碳库及全球碳循环具有重要意义。采用容器法和微根管法于2013年6~10月整个生长季内对紫花苜蓿的细根生物量、生产以及周转规律进行研究。结果表明:(1)紫花苜蓿活细根现存生物量平均值以接种摩西球囊霉(Gm)处理最高(12.46g·m-2),未接种对照最低(7.31g·m-2),并且活细根现存量在9月中旬达到峰值;死细根现存生物量呈先增加后降低再增加的变化趋势,在整个生长过程中未接种处理高于接种处理,接种根内球囊霉(Gi)处理死细根现存平均生物量(3.11g·m-2)又较接种组其他处理低。(2)苜蓿植株细根生长量以接种幼套球囊霉(Ge)处理最大(0.045 mm·cm-2·d-1),接种Gm处理和未接种对照最低(均为0.027mm·cm-2·d-1);而未接菌植株细根死亡量(0.044mm·cm-2·d-1)显著高于接种植株,接种组又以Gi处理最低(0.021mm·cm-2·d-1)。(3)紫花苜蓿在生长季节内细根生产和死亡的高峰分别出现在8月底和10月份,低谷出现在9月底到10月中旬和6月底到8月;接种地表球囊霉(Gv)后细根现存量和年生长量显著高于对照和接种其他菌种处理,细根的周转以对照组最大,而接种Gv和Gm处理较低。研究发现,通过接种丛植菌根真菌可以提高苜蓿细根生物量,降低细根的死亡,增加细根寿命。  相似文献   

2.
To assess the changes in seasonal carbohydrate status of Populus tremuloides, sugar and starch concentrations were monitored in roots, stem xylem and phloem and branches of ten different clones. Time of root growth was assessed by extraction of roots from in-growth cores collected five times during the season. Overall the results showed that the main period of root growth in these northern clones was shifted from spring to late summer and fall likely due to the microclimatic conditions of the soil. This increase in root growth was associated with a decline in total non-structural carbohydrate content in the roots during this period. This study also found that the carbohydrate reserves in these clones were being stored as close as possible to the organs of annual growth (leaves and roots). At the time of leaf flush, the largest reduction in stored carbohydrates (3% of dry weight) was observed in the branches of the trees, compared to a slight decline in the stem and roots. Starch and sugar reserves in most tissues were very low in early summer. This suggests that reserves that might be used for the regrowth of foliage after insect defoliation or other disturbances, are relatively small compared to the portion that is needed for maintenance and typical growth developments such as leaf flush.  相似文献   

3.
Bingham  I.J.  Bengough  A.G. 《Plant and Soil》2003,250(2):273-282
Root systems of individual crop plants may encounter large variations in mechanical impedance to root penetration. Split-root experiments were conducted to compare the effects of spatial variation in soil strength on the morphological plasticity of wheat and barley roots, and its relationship to shoot growth. Plants of spring barley (Hordeum vulgare cv Prisma) and spring wheat (Triticum aestivum cv Alexandria) were grown for 12 days with their seminal roots divided between two halves of a cylinder packed with sandy loam soil. Three treatment combinations were imposed: loose soil where both halves of the cylinder were packed to 1.1 g cm–3 (penetrometer resistance 0.3 MPa), dense soil where both halves were packed to 1.4 g cm–3 (penetrometer resistance 1 MPa), and a split-root treatment where one half was packed to 1.1 and the other to 1.4 g cm–3. In barley, uniform high soil strength restricted the extension of main seminal root axes more than laterals. In the split-root treatment, the length of laterals and the dry weight of main axes and laterals were increased in the loose soil half and reduced in the dense soil half compared with their respective loose and dense-soil controls. No such compensatory adjustments between main axis and laterals and between individual seminal roots were found in wheat. Variation in soil strength had no effect on the density of lateral roots (number per unit main axis length) in either barley or wheat. The nature and extent of wheat root plasticity in response to variation in soil strength was very different from that in response to changes in N-supply in previous experiments. In spite of the compensatory adjustments in growth between individual seminal roots of barley, the growth of barley shoots, as in wheat, was reduced when part of the root system was in compacted soil.  相似文献   

4.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

5.
Growing root tips usually constituted less than 1 per cent and mycorrhizal roots less than 6 per cent of the total root surface under a 34-year-old pine stand. Growing root tips usually constituted less than 1 per cent of the total root surface under a yellow poplar stand, although one sample taken in May contained 9 per cent of unsuberized roots. The water permeability of various types of roots was measured under a pressure gradient of 31 cm of mercury. It differed widely among individual roots, ranging from an average of 6.6. mm3/cm2/hr for suberized pine roots 1.33 mm in diameter, to 36.6 mm3 for suberized pine roots 3 mm in diameter, and 178 mm3/ cm2/hr for unsuberized roots grown in water culture. Water intake through a group of unsuberized roots grown in soil averaged 37.4 mm3/cm2/hr. The permeability of yellow poplar roots varied even more, ranging from essentially zero to 30,000 mm3/cm2/hr. It is concluded that the major part of water absorption in pine occurs through suberized roots, some through mycorrhizal roots, and relatively little through growing root tips. Likewise, in yellow-poplar most of the water probably enters through suberized roots. Further study is needed of the role of suberized roots in water and salt absorption.  相似文献   

6.
A recently formulated convection–diffusion model predicted that root growth plus diffusion of protons in the neighbouring soil would lead to particular pH patterns around the moving root tip. To test the predictions of this theory, pH was measured at differing radial distances from the root surface after 24 h of growth in a medium with low diffusivity (sandy soil) and after a shorter period (55 min of growth) in a medium with high diffusivity (agar). In agreement with the theory, the growth zone was found to influence the pH of the soil for distances less than 1 mm from the root surface (even after many hours) and the pH of the agar for a distance of at least 5 mm (after only 1 h). The axial pattern of pH along the surface of soil‐grown Zea mays L. root tips was found to be the same for roots growing at different rates under different temperatures (2·23  mm h?1 at 26 °C or 1·27 mm h?1 at 20 °C). Thus, the plant can synchronize proton flux with growth to maintain a particular surface pH pattern within the growth zone. This implies that root tips growing at different rates in response to different temperatures can carry the same microenvironment of pH through a homogeneous soil.  相似文献   

7.
柠条人工林幼林与成林细根动态比较研究   总被引:2,自引:0,他引:2  
陈建文  王孟本  史建伟 《生态学报》2011,31(22):6978-6988
以晋西北黄土高原区柠条(Caragana korshinskii)人工林幼林和成林为研究对象,应用微根管技术(Minirhizotron technique)对林地0-100 cm土壤剖面的柠条细根生长动态进行了观测.以2007年生长季(4-9月)观测数据为基础,对两林地的柠条细根生长速率(G,mm cm-3 d-1)和细根死亡速率(M,mm cm-3 d-1)的时空变化格局及其与气温、降水、土壤温度和土壤水分等环境因子的关系进行了研究.结果表明,在年生长季,幼林的G(0.1264 mm cm-3 d-1)和M(0.0354 mm cm-3 d-1)均高于成林(分别为0.0914 mm cm-3 d-1和0.0220 mm cm-3 d-1).在垂直分布上,幼林G出现最大值的土层深度(70-80 cm)较成林(50-60 cm)为深.两林地的G和M具有相似的季节变化特点,即G在4月到7月之间缓慢增大,8月迅速达到峰值,之后迅速减小;M自4月至9月M呈持续增高趋势.配对数据t检验结果显示,幼林与成林的C没有显著差异(P>0.05),而幼林的M显著高于成林(P<0.05).Pearson相关系数表明,幼林和成林G的垂直分布与土壤温度和土壤水分的垂直变化没有显著相关性;但是幼林和成林M的垂直分布与土壤温度的相关性显著(幼林地P<0.01;成林地P<0.05).在年生长季,幼林G与气温和土壤温度具有显著正相关性(与气温的P<0.01;与土壤温度的P<0.05);而成林G与各环境因子的相关性则均不显著(P>0.05).两林地的M与各环境因子的相关性均不显著(P>0.05).  相似文献   

8.
Row crops are often inefficient in utilizing soil resources. One reason for this appears to be inefficient rooting of the available soil volume. Five experiments were performed to study the temporal and spatial root development of cauliflower (cv. Plana). The crop was grown with 60 cm between rows, and root development was followed in minirhizotrons placed under the crop rows, 15 cm, and 30 cm from the crop rows. Soil was sampled and analyzed for nitrate content at the final harvest and once during growth. In two of the experiments N fertilizer rate was varied and in two of the other experiments two cultivars were compared (cv. Plana and Siria).The rooting depth of cauliflower was found to be linearly related to temperature sum, with a growth rate of 1.02 mm day-1 °C-1. Depending on duration of growth this leads to rooting depths at harvest of 85–115 cm. Soil analysis showed that the cauliflower was able to utilize soil nitrogen down to at least 100 cm.With Plana differences in root growth between row and interrow soil were only observed during early growth, but with Siria this difference was maintained until harvest. However, at harvest both cultivars had depleted row and interrow soil nitrate equally efficient. Nitrogen fertilizer did not affect overall root development significantly.The branching frequency of actively branching roots was increased in all soil layers from about 6 to 10 branches cm-1 by increasing N fertilizer additions from 130 to 290 kg N ha-1. Increasing N supply increased the number of actively branching roots in the topsoil and reduced it in the subsoil.The average growth rate of the roots was always highest in the newly rooted soil layers, but fell during time. At 74 days after planting very few roots were growing in the upper 60 cm of the soil whereas 70% of the root tips observed in the 80–100 cm soil layer were actively growing. Within each soil layer there was a large variation in growth rate of individual root tips.  相似文献   

9.
陕西榆林春玉米高产田土壤理化性状及根系分布   总被引:7,自引:0,他引:7  
调查分析了陕西榆林2块19500 kg·hm-2以上超高产春玉米田的产量构成、干物质分配和0~100 cm土层根系分布及土壤理化性状指标.结果表明:其种植密度为105000~123000株·hm-2、成穗率97.7%~102.2%、千粒重320 g以上,果穗干物质积累量占整株干物质积累量的60.2%~65.5%.0~100 cm土壤平均容重为1.28~1.33 g·cm-3,层间(每层20 cm)土壤容重、孔隙度和田间持水量均呈“M”型变化.玉米根系主要分布在0~60 cm,0~20 cm土层根系量占根系总量的64.8%~72.1%,20~60 cm土层根系量占根系总量的23.30%~28.17%.根系分布与土壤理化性状关系密切,0~20 cm土层玉米的根系量与土壤有机质、全氮和全磷含量呈显著正相关,20~60 cm土层根系量与土壤容重和田间持水量显著相关.因此,选择通透性和保水保肥能力良好的土壤,实行宽窄行双株密植栽培是获得玉米高产的关键.  相似文献   

10.
Pietola  Liisa  Smucker  Alvin J.M. 《Plant and Soil》1998,200(1):95-105
Field experiments were performed in Southern Finland on fine sand and organic soil in 1990 and 1991 to study carrot roots. Fall ploughed land was loosened by rotary harrowing to a depth of 20 cm or compacted under moist conditions to a depth of 25–30 cm by three passes of adjacent wheel tracks with a tractor weighing 3 Mg, in April were contiguously applied across the plot before seed bed preparation. Sprinkler irrigation (30 mm) was applied to fine sand when moisture in the 0–15 cm range of soil depth was 50% of plant-available water capacity. For root sampling, polyvinyl chloride (PVC) cylinders (30 × 60 cm) were installed in the rows of experimental plots after sowing, and removed at harvest. Six carrot plants were grown in each of in these soil colums in situ in the field.Fine root length and width were quantified by image analysis. Root length density (RLD) per plant was 0.2–1.0 cm cm-3 in the 0–30 cm range. The fibrous root system of one carrot had total root lengths of 130–150 m in loose fine sand and 180–200 m in compacted fine sand. More roots were observed in irrigated than non-irrigated soils. In the 0–50 cm range of organic soil, 230–250 m of root length were removed from loosened organic soils and 240–300 m from compacted soils. Specific root surface area (surface area divided by dry root weight) of a carrot fibrous root system averaged 1500–2000 cm2 g-1. Root length to weight ratios of 250–350 m g-1 effectively compare with the ratios of other species.Fibrous root growth was stimulated by soil compaction or irrigation to a depth of 30 cm, in both the fine sand and organic soils, suggesting better soil water supply in compacted than in loosened soils. Soil compaction increased root diameters more in fine sand than it did in organic soil. Most of the root length in loosened soils (fine sand 90%, organic soil 80%) and compacted soils (fine sand 80%, organic soil 75%) was composed of roots with diameters of approximately 0.15 mm. With respect to dry weight, length, surface area and volume of the fibrous root system, all the measurements gave significant resposes to irrigation and soil compaction. Total root volumes in the 0–50 cm of soil were 4.3 cm3 and 9.8 cm3 in loosened fine sand and organic soils, respectively, and 6.7 cm3 and 13.4 cm3 in compacted sand and organic soils, respectively. In fine sand, irrigation increased the volume from 4.8 to 6.3 cm3.  相似文献   

11.
External hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi were quantified over a growing season in a reconstructed tallgrass prairie and an ungrazed cool-season pasture. In both sites, hyphal lengths increased throughout the growing season. Peak external hyphal lengths were 111 m cm–3 of soil in the prairie and 81 m cm–3 of soil in the pasture. These hyphal lengths calculate to external hyphal dry weights of 457 g cm–3 and 339 g cm–3 of soil for prairie and pasture communities, respectively. The relationships among external hyphal length, root characteristics, soil P and soil moisture were also determined. Measures of gross root morphology [e.g., specific root length (SRL) and root mass] have a strong association with external hyphal length. Over the course of the study, both grassland communities experienced a major drought event in late spring. During this period a reduction in SRL occurred in both the pasture and prairie without a measured reduction in external hyphal length. Recovery for both the pasture and prairie occurred not by increasing SRL, but rather by increasing external hyphal length. This study suggests that growth is coordinated between VAM hyphae and root morphology, which in turn, are constrained by plant community composition and soil nutrient and moisture conditions.  相似文献   

12.
Shoot and root growth rate, carbohydrate accumulation (includingfructan), reducing sugar content and dry matter percentage weremeasured in six wheat cultivars, ranging from winter to springtypes, grown at either 5 or 25 °C. At 5 °C (comparedwith 25 °C), the relative growth rate (RGR) of shoots wassimilarly reduced in all cultivars, but the RGR of shoots wasmore affected in winter wheats. This difference resulted insmaller root:shoot ratios than in spring wheats, which alsodeveloped more first-order lateral roots. A direct relationshipbetween carbohydrate accumulation at low temperatures and reductionin root growth was established. These results suggest that differentialshootvs.root growth inhibition at low temperature may play akey role in carbohydrate accumulation at chilling temperatures.This differential response might lead to improvements in survivalat temperatures below 0 °C, regrowth during spring, andwater and nutrient absorption at low temperatures.Copyright1997 Annals of Botany Company Wheat; Triticum aestivum; low temperatures; root growth; root: shoot ratio; sugar accumulation  相似文献   

13.
Cover crops grown as green manure or for other purposes will affect nitrogen (N) distribution in the soil, and may thereby alter root growth of a succeeding crop. During two years, experiments were performed to study effects of nitrogen supply by green manure on root development of carrots (Daucus carota L). Total root intensity (roots cm−2 on minirhizotrons) was significantly affected by the green manures, and was highest in the control plots where no green manure had been grown. Spread of the root system into the interrow soil was also affected by green manure treatments, as the spread was reduced where spring topsoil Nmin was high. Although N supply and distribution in the soil profile differed strongly among the treatments, no effect was observed on the rooting depth of the carrot crops. Across all treatments the rooting front penetrated at a rate of 0.82 and 0.68 mm day−1 °C−1 beneath the crop rows and in the interrow soil, respectively. The minirhizotrons only allowed measurements down to 1 m, and the roots reached this depth before harvest. Extrapolating the linear relationship between temperature sum and rooting depth until harvest would lead to rooting depths of 1.59 and 1.18 m under the crop rows and in the interrow soil respectively. Soil analysis showed that the carrot crop was able to reduce Nmin to very low levels even in the 0.75 to 1.0 m soil layer, which is in accordance with the root measurements. Still, where well supplied, the carrots left up 90 kg N ha−1 in the soil at harvest. This seemed to be related to a limited N uptake capacity of the carrots rather than to insufficient root growth in the top metre of the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Seasonal changes of fine root density in the Southern Californian chaparral   总被引:1,自引:0,他引:1  
Summary Fine root extractions from soil cores of a south facing slope in the Southern Californian chaparral were used to study the dynamics of feeder root growth in a summer-dry area. The studies were concentrated on the root systems of Adenostoma fasciculatum, Arctostaphylos glauca, Ceanothus greggii, and Rhus ovata. The total fine root biomass of Adenostoma fasciculatum increased from 0.6 g dm-3 in early spring to 3.6 g dm-3 in late summer. Considering the specific soil conditions at this site and earlier gained information on fine root distribution with depth, the value of 3.6 g dm-3 converts to 1.58 kg m-2 of ground shaded by the shrub canopy. The observed seasonal biomass increase is mainly due to the accumulation of dead root material in the soil when low soil moisture contents presumably inhibited decomposition processes. The total length of living fine roots also increased during the season, e.g. from 0.8 m dm-3 to more than 5 m dm-3 (0.35 km m-2 to 2.2 km m-2) in A. fasciculatum. Unusual summer rains in the research year stimulated vigorous fine root growth at a time when the normally low soil moisture would prohibit further fine root growth. The average fine root diameters and total lengths of fine roots beneath one square meter of ground surface allowed an estimate of root area indices (RAI) analogous to the leaf area indices (LAI). The data provide evidence for a significant fine root turnover in the chaparral.  相似文献   

15.
Summary Root attributes of tree seedlings of seven species from the tropical deciduous forest along the Pacific Coast of Mexico are described using morphometirc root system analysis. Mean relative growth rate, root/shoot ratios, specific root length, root density, mean number of roots tips and root length/leaf area ratio were determined in seedlings grown for 35 days inside growth chambers. All the species had low relative growth rates, low root/shoot ratios and low root densities (<0.5 cm/cm3). The species associated with disturbed habitats, in contrast to the species characteristic of undisturbed areas, presented small seeds, a dichotomous root branching pattern and large specific root length. No relationship was found between seed size and mean relative growth rate among the species studied.  相似文献   

16.
To help evaluate root distribution patterns, elongation rates of individual roots were measured as a function of soil temperature for Encelia farinosa (a C3 species), Pleuraphis rigida (C4), and Agave deserti (CAM), sympatric codominants in the northwestern Sonoran Desert. Measurements were made at current and doubled CO2 concentrations under winter and summer conditions of air temperature (day/night temperatures of 17 C/10 C and 33 C/22 C, respectively). The three species had different optimal temperatures for root elongation (Topt) under winter conditions (25 C for E. farinosa, 35 C for P. rigida, and 30 C for A. deserti); Topt increased by 2-3 C under summer conditions for all three species. The limiting temperatures for elongation also acclimated from winter to summer conditions. The rate of root elongation at Topt was higher under summer than winter conditions for E. farinosa (9 vs. 6 mm d−1) and P. rigida (20 vs. 14 mm d−1), reflecting conditions for maximum photosynthesis; no difference occurred for A. deserti (9 vs. 10 mm d−1). Decreased elongation rates at extreme temperatures were associated with less cell division and reduced cell extension. The doubled CO2 concentration increased average daily root elongation rates for A. deserti under both winter (7%) and summer (12%) conditions, reflecting increased cell extension, but had no effect for the other two species. Simulations of root elongation as a function of soil temperatures showed that maximum elongation would occur at different depths (16-20 cm for E. farinosa, 4-8 cm for P. rigida, and 0-4 cm for A. deserti) and during different seasons (winter to spring for E. farinosa, spring to summer for P. rigida, and all year for A. deserti), contributing to their niche separation. Shading of the soil surface moderated daily variations in soil temperature, reducing seasonal root elongation for winter and spring and increasing elongation for summer. Shading also altered root distribution patterns, e.g., optimal rooting depth for A. deserti and especially P. rigida increased for a hot summer day.  相似文献   

17.
Smith  D.M.  Jackson  N.A.  Roberts  J.M.  Ong  C.K. 《Plant and Soil》1999,211(2):191-205
Limited knowledge of root distributions in agroforestry systems has resulted in assumptions that various tree species are more suited to agroforestry than others, because they are presumed to have few superficial lateral roots. This assumption was tested for Grevillea robusta when grown with maize (Zea mays) in an agroforestry system in a semi-arid region of Kenya. At a site with a shallow soil, root lengths of both species between the soil surface and bedrock were quantified by soil coring, at intervals over four cropping seasons, in plots containing sole stands and mixtures of the trees and crop; the trees were 4–6 years old and they were severely pruned before the third season. Profiles of soil water content were measured using a neutron probe. Prior to pruning of the trees, recharge of soil water below the deepest maize roots did not occur, resulting in significant (P<0.05) suppression of maize root lengths and downward root growth. Maximum root length densities for both species occurred at the top of the soil profile, reaching 1.1–1.7 cm cm-3 for G. robusta, but only 0.5 cm cm-3 for maize grown with trees. Root populations in mixed plots were dominated by G. robusta at all times, all depths and all distances from trees and maize and, thus, there was no spatial separation of the rooting zones of the trees and crop. Competition between G. robusta and maize for soil water stored near the surface was unavoidable, although pruning reduced its impact; complementary use of water by the trees and crop would only have been possible if alternative sources of water were available. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Relative conductivity (K) to water in healthy apple trees ranged from maximum values of 18.2 cm3.100 s-1.cm length.0.001 Pas.kPa-1.cm-2 xylem area, for major suberized roots to values of 1.6 for 1-yr-old twigs. The values for equivalent parts of healthy cherry trees were 26.3 and 3.3. Trees with roots affected by the larvae of the fruit tree root weevil (Leptopius squalidus) which causes either chronic growth decline or sudden wilting and death, had values as low as 1% of healthy trees, in those parts of the tree showing wilting and lack of growth. Water flow under pressure into the root systems of healthy apple trees increased linearly with increases in pressure from 200 to 800 kPa. Flows into dormant and active root systems respectively were 0.6 and 1.7 cm3.100 s-1. 100 cm2 root surface area. 100 kPa-1.  相似文献   

19.

Background and Aims

To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings.

Methods

Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts.

Key Results

Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed.

Conclusions

The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability.  相似文献   

20.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号